NEET MDS Lessons
Dental Materials
INVESTING
Mixing investment with distilled water is done according to the manufacturers ratio in a clean dry bowl without entrapment of the air into the mix.
Mixing methods:
a. Hand mixing and the use of the vibrator to remove air bubbles.
b. Vacuum mixing- This is the better method because it removes air bubbles as well as gases that are produced and thus produces a smoother mix.
Methods of investing:
a. Hand investing
b. Vacuum investing
Hand investing:
First the mixed investment is applied on all the surfaces of the pattern with a soft brush. Blow off any excess investment gently, thus leaving a thin film of investment over the pattern, then apply again.
Then the coated pattern can be invested by two methods;
1. Placing the pattern in the ring first and then filling the ring full with investment.
2. Filling the ring with the investment first and then force the pattern through into it.
Vacuum investing :
Vacuum investing unit: This consists of the chamber of small cubic capacity from which air can be evacuated quickly and in which casting ring can be placed.
Evacuation of air can be done by electrically or water driven vacuum pump.
Procedure:
The ring filled with investment is placed in the vacuum chamber. Air entry tube is closed. Then the vacuum is applied. The investment will rise with froth vigorously for about 10-15 sec and then settles back. This indicates that air has been extracted from the ring. The pressure is now restored to atmospheric by opening the air entry tap gradually at first and then more rapidly as the investment settles back around the pattern. Then the ring is removed from the chamber and the investment is allowed to set. Modern investing unit does both mixing and investing under vacuum and is considered better than hand mixing and pouring.
Then there are two alternatives to be followed depending upon what type of expansion is to be achieved in order to compensate for metal shrinkage. They are:
1. If hygroscopic expansion of the investment is to be achieved then immediately immerse the filled ring in water at the temperature of 37C.
Or “under controlled water adding technique”. A soft flexible rubber ring is used instead of usual lined metal ring. Pattern is invested as usual. Then specified amount of water is added on top of the investment in the rubber ring and the investment is allowed to set at room temperature. In this way only enough water is added to the investment to provide the desired expansion.
2. If thermal expansion of the investment is to be achieved, then investment is allowed to set by placing the ring on the bench for 1 hour or as recommended by the manufacturer.
POLISHING MATERIALS
1 Tin Oxide. Tin oxide is used in polishing teeth and metal restorations. Tin oxide is a fine, white powder that is made into a paste by adding water or glycerin.
2. Pumice. Pumice is used as an abrasive and polishing agent for acrylic resins, amalgams, and gold. It consists mainly of complex silicates of aluminum, potassium, and sodium. Two grades--flour of pumice and coarse pumice--are listed in the Federal Supply Catalog.
3. Chalk (Whiting). Chalk is used for polishing acrylic resins and metals. It is composed primarily of calcium carbonate.
4.Tripoli. Tripoli is usually used for polishing gold and other metals. It is made from certain porous rocks.
5. Rouge (Jeweler's). Rouge is used for polishing gold and is composed of iron oxide. It is usually in cake or stick form.
6. Zirconium Silicate. Zirconium silicate is used for cleaning and polishing teeth. It may be mixed with water or with fluoride solution for caries prevention treatment. For full effectiveness, instructions must be followed exactly to obtain the proper proportions of powder to liquid.
Solution Liners (Varnishes)
Applications
o Enamel and dentin lining for amalgam restorations
o Enamel and dentin lining for cast restorations that are used with non adhesive cements
o Coating over materials that are moisture sensitive during setting
Components of copal resin varnish
o 90% solvent mixture (e.g., chloroform, acetone, and alcohol)
o 10% dissolved copal resin
Reaction
Varnish sets physically by drying → Solvent loss occurs in 5 to 15 seconds (a film forms the same way as drying fingernail polish)
Manipulation
Apply thin coat over dentin. enamel. And margins of the cavity preparation → Dry lightly with air for 5 seconds Apply a second thin coat → Final thickness is 1 to 5 µ.m
Properties
o Physical
Electrically insulating barrier that prevents shocks. Too thin to be thermally insulating. Decreases degree of percolation attributable to thermal expansion
o Chemical
Forms temporary barrier that prevents microleakage into dentinal tubules until secondary dentin formation occurs. Decreases initial tendency for electrochemical corrosion
o Mechanical
Very weak and brittle film that has limited lifetime
Film adheres to smear layer
Temporary Filling Materials
Applications / Use
While waiting for lab fabrication of cast restoration
While observing reaction of pulp tissues
Objectives
Provide pulpal protection
Provide medication to reduce pulpal inflammation
Maintain the tooth position with an aesthetic restoration
Classification
Temporary filling cements
Temporary filling resins
Components
Temporary filling cements
1. Zinc oxide-eugenol cement with cotton fibers added
2. Polyme r powder-reinforced zinc oxide eugenol cement
Temporary filling resins
• MMA / PMMA filling materials
• Polyamide filling materials
• BIS-GMA filling materials
Components
a. Fillers added to most to control shrinkage
b. Matrix