NEET MDS Lessons
Dental Materials
PHYSICAL PROPERTIES OF MATERIALS
Definite and precise terms are used to describe the physical properties of dental materials.
a. Hardness. Hardness is the measure of the resistance of a metal to indentation or scratching. It is an indication of the strength and wearability of an alloy or metal.
b. Ductility. Ductility is the measure of the capacity of a metal to be stretched or drawn by a pulling or tensile force without fracturing. This property permits a metal to be drawn into a thin wire.
c. Malleability. Malleability is the measure of the capacity of a metal to be extended in all directions by a compressive force, such as rolling or hammering. This property permits a metal to be shaped into a thin sheet or plate.
d. Flexibility and Elasticity. These terms differ in their technical definition but they are very closely related. Flexibility is the characteristic of a metal, which allows it to deform temporarily. The elasticity of a metal is used when it returns to its original shape when the load or force is removed.
e. Fatigue. Fatigue is the property of a metal to tire and to fracture after repeated stressing at loads below its proportional limit.
f. Structure (Crystalline or Grain Structure). Metals are crystalline and many of their physical properties depend largely upon the size and arrangement of their minute crystals called grains.
(1) Grain size. The size of the grains in a solidified metal depends upon the number of nuclei of crystallization present and the rate of crystal growth. In the practical sense, the faster a molten is cooled to solidification, the greater will be the number of nuclei and the smaller will be the grain size. Generally speaking, small grains arranged in an orderly fashion give the most desirable properties.
(2) Grain shape. The shape of the grains is also formed at the time of crystallization. If the metal is poured or forced into a mold before cooling, the grains will be in a flattened state. Metal formed by this method is known as cast metal. If the metal is shaped by rolling, bending, or twisting, the grains are elongated and the metal becomes a wrought wire.
g. Crushing Strength. Crushing strength is the amount of resistance of a material to fracture under compression.
h. Thermal Conductivity. Thermal conductivity is defined as the ability of a material to transmit heat or cold. A low thermal conductivity is desired in restorative materials used on the tooth whereas a high thermal conductivity is desirable where the material covers soft tissue.
Properties-improve with filler content
Physical
Radiopacity depends on ions in silicate glass or the addition of barium sulfate (many systems radiolucent)
Coefficient of thermal expansion is 35 to 45 ppm/C and decreases with increasing filler content
Thermal and electrical insulators
Chemical
Water absorption is 0.5 % to 2.5% and increases with polymer level)
Acidulated topical fluorides (e.g., APF) tend to dissolve glass particles, and thus composites should be protected with petroleum jelly (Vaseline) during those procedures
Color changes occur in resin matrix with time because of oxidation, which produces colored by-products
Mechanical
Compressive strength is 45,000 to 60,000 lb/ in2, which is adequate
Wear resistance-improves with higher filler content, higher percentage of conversion in curing, and use of microfiller, but it is not adequate for some posterior applications
Surfaces rough from wear retain plaque and stain more readily
Biologic
Components may be cytotoxic, but cured composite is biocompatible as restorative filling material
Composition of Acrylic Resins.
· Powder. The powder is composed of a polymethyl methacrylate (PMMA), peroxide initiator, and pigments
· Liquid. The liquid is a monomethyl methacrylate (MMA), hydroquinone inhibitor, cross-linking agents, and chemical accelerators (N, N-dimethyl-p-toluidine)
Tooth Polishing and Cleansing Agents
1. Cleansing-removal of exogenous stains, pellicle, materia alba, and other oral debris without causing undue abrasion to tooth structure
2. Polishing-smoothening surfaces of amalgam, composite, glass ionomers, porcelain, and other restorative materials
Factors influencing cleaning and polishing
- Hardness of abrasive particles versus substrate
- Particle size of abrasive particles
- Pressure applied during procedure
- Temperature of abrasive materials
Structure
Composition
-contain abrasives, such as kaolinite, silicon dioxide, calcined magnesium silicate, diatomaceous silicon dioxide, pumice. Sodium-potassium
-aluminum silicate, or zirconium silicate; some pastes also may contain sodium fluoride or stannous fluoride, but they have never been shown to produce positive effects
Reactions-abrasion for cleansing and polishing
Properties - Mechanical
- Products with pumice and quartz produce more efficient cleansing but also generate greater abrasion of enamel and dentin
-Coarse pumice is the most abrasive
-The abrasion rate of dentin is 5 to 6 times faster than the abrasion rate of enamel, regardless of the product
-Polymeric restorative materials, such as denture bases, denture teeth, composites, PMMA veneers, and composite veneers, can be easily scratched during polishing
-Do not polish cast porcelain restorations (e.g., Dicor) that are externally characterized or the color will be lost
Root canal sealers
Applications
Cementation of silver cone gutta-percha point
Paste filling material
Types
Zinc oxide-eugenol cement types
Noneugenol cement types
Therapeutic cement types
properties
Physical-radiopacity
Chemical-insolubility
Mechanical-flow; tensile strength
Biologic-inertness
Gingival tissue packs
Application-provide temporary displacement of gingival tissues
Composition-slow setting zinc oxide-eugenol cement mixed with cotton twills for texture and strength
Surgical dressings
1.Application-gingival covering after periodontal surgery
2. Composition-modified zinc oxide-eugenol cement (containing tannic, acid. rosin, and various oils)
Orthodontic cements
Application-cementation of orthodontic bands
Composition-zinc phosphate cement
Manipulation
Zinc phosphate types are routinely mixed with cold or frozen mixing slab to extend the working time
Enamel bonding agent types use acid etching for improved bonding
Band, bracket, or cement removal requires special care