Talk to us?

Dental Materials - NEETMDS- courses
NEET MDS Lessons
Dental Materials

Classification of Dental amalgam

1. By powder particle shape .

  • Irregular (comminuted, filing, or lathecut)
  • Spherical (spherodized)
  • Blends (e.g., irregular-irregular, irregularspherical, or spherical-spherical)

2. By total amount of copper

  • Low-copper alloys (e.g., conventional, traditional); <5% copper
  • High-copper alloys (e,g.  corrosion resistant); 12% to 28% copper

3.By presence of zinc

Examples

  • Low-copper, irregular-particle alloy-silver (70%)-tin (26%)-copper (4%)
  • High-copper, blended-particles alloy-irregular particles, silver (70%) –tin (26%) -Copper (4%); spherical particles, silver (72%)-copper (28%)
  • High-copper, spherical-particles alloy-silver (60%) - tin (27%)-copper (13%)

Cement liners

Applications (if remaining dentin thickness is <0.5 mm)

o    Used for thermal insulation where cavity preparation is close to the pulp
o    Used for delivering medicaments to the pulp

•    Calcium hydroxide stimulates reparative dentin or
•    Eugenol relieves pain by desensitizing nerves
•    Used to deliver F ion to enamel and dentin

Components

o    Paste of calcium hydroxide reactant powder, ethyl toluene sulfonamide dispersant, zinc oxide filler, and zinc stearate radiopacifier
o    Paste of glycol salicylate reactant liquid, titanium dioxide filler powder, and calcium tungstenate radiopacifier

Reaction

Chemical reaction of calcium ions with salicylate to form methylsalicylate salts Moisture absorbed to allow calcium hydroxide to dissociate into ions to react with salicylate Mixture sets from outside surface to inside as water diffuses

Manipulation

Dentin should not be dehydrated or material will not setMix drop of each paste together for 5 secondsApply material to dentin and allow I to 2 minutes to set

Properties

o    Physical-good thermal and electrical insulator
o    Chemical-poor resistance to water solubility and may dissolve
o    Mechanical-low compressive strength (100 to 500 psi)
o    Biologic-releases calcium hydroxide constituents, which diffuse toward the pulp and stimulate
o    reparative dentin formation

Reaction

PMMA powder makes mixture viscous for manipulation before curing. Chemical accelerators cause decomposition of benzoyl peroxide into free radicals that initiate polymerization of monomer

New PMMA is formed into a matrix that surrounds PMMA powder. Linear shrinkage of 5% to 7% during setting. but dimensions of appliances are not critical

Waxes

Many different waxes are used in dentistry. The composition, form, and color of each wax are designed to facilitate its use and to produce the best possible results.

Applications

o    Making impressions
o    Registering of tooth or soft tissue positions
o    Creating restorative patterns for lab fabrication
o    Aiding in laboratory procedures

Classification

a. Pattern waxes-inlay, casting, and baseplate waxes
b. Impression waxes-corrective and biteplate waxes
c. Processing waxes-boxing, utility, and sticky waxes

Types

1) Inlay wax-used to create a pattern for inlay, onlay or crown for subsequent investing and casting in a metal alloy.
2) Casting wax-used to create a pattern for metallic framework for a removable partial denture
3) Baseplate wax-used to establish the vertical dimension. plane of occlusion. and  initial arch form of a complete denture
4) Corrective impression wax-used to form a registry pattern of soft tissues on an impression
5) Bite registration wax-used to form a registry pattern for the occlusion of opposing models or casts
6) Boxing wax-used to form a box around an impression before pouring a  model or cast
7) Utility wax -soft pliable adhesive wax for modifying appliances, such as alginate impression trays
8) Sticky  wax-sticky when melted and used to temporarily adhere pieces of metal or resin in laboratory procedures


Components

a. Base waxes-hydrocarbon (paraffin) ester waxes    
b. Modifier waxes-carnauba, ceresin, bees wax, rosin, gum dammar, or microcrystalline waxes
c. Additives-colorants

Reaction-waxes are thermoplastic

Properties

Physical

a. High coefficients of thermal expansion and contraction
b. Insulators and so, cool unevenly; should be waxed in increments to allow heat dissipation

Chemical

a. Degrade prematurely if overheated
b. Designed to degrade into CO2and H2Oduring burnout

Mechanical-stiffness, hardness, and strength depend on modifier waxes used
 

Finishing and Polishing

Remove oxygen-inhibited layer .Use stones or carbide burs for gross reduction.Use highly fluted carbide burs or special diamonds for fine reduction.Use aluminum oxide strips or disks for finishing. Use fine aluminum oxide finishing pastes. Microfills develop smoothest finish because of small size of filler particles
 

Impression Material

 

 

Materials

Type

Reaction

Composition

Manipulation

Initial setting time

 

Plaster

Rigid

Chemical

Calcuim sulfate hemihydrate, water

Mix P/L in bowl

3-5 min

 

Compound

Rigid

Physical

Resins, wax, stearic acid, and fillers

Soften by heating

 

Variable (sets on

cooling)

Zinc oxide-eugonel

Rigid

Chemical

Zinc oxide powder, oils, eugenol, and

resin

Mix pastes on pad

 

3-5 min

 

Agar-agar

Flexible

Physical

12-15% agar, borax, potassium sulfate,

and 85% water

Mix P/L in bowl

 

Variable (sets on

cooling)

 

alginate

Flexible

Chemical

Sodium alginate, calcium sulfate, retarders,

and 85% water

Mix P/L in bowl

 

4-5 min

 

Polysulfide

Flexible

Chemical

Low MW mercaptan polymer, fillers, lead

dioxide, copper hydroxide, or peroxides

Mix pastes on pad

 

5-7 min

 

Silicone

Flexible

Chemical

Hydroxyl functional dimethyl siloxane, fillers,

tin octoate, and orthoethyl silicate

Mix pastes on pad

 

4.5 min

 

Polyether

Flexible

Chemical

Aromatic sulfonic acid ester and polyether

with ethylene imine groups

Mix pastes on pad

 

2-4 min

 

Polyvinyl siloxane

Flexible

Chemical

Vinyl silicone, filler, chloroplatinic acid,

low MW silicone, and filler

Mix putty or use

two-component

mixing gun

 

4-5 min

 

 

 

 

Mouth Protectors

Use - to protect against effects of blows to chin, top of the head, the face, or grinding of the teeth

Types

o    Stock protectors-least desirable because of poor fit
o    Mouth-formed protectors-improved fit compared with stock type
o    Custom-made protectors-preferred because of durability. low  speech impairment, and comfort


I. Components

a. Stock protectors-thermoplastic copolymer of PYA-PE (polyvinyl acetate-polyethylene copolymer)
b. Mouth-formed protectors-thermoplastic copolymer
c. Custom-made protectors- thermoplastic copolymer, rubber. or polyurethane
2. Reaction-physical reaction of hardening during cooling
3. Fabrication

Alginate impression made of maxillary arch. High-strength stone cast poured immediately. Thermoplastic material is heated in hot water and vacuum-molded to cast .

Mouth protector trimmed to within ½ inch of labial fold, clearance provided at the buccal and labial frena, and edges smoothed by flaming. Gagging, taste, irritation. and impairment of speech are minimized with properly fabricated appliances

4. Instructions for use

a. Rinse before and after use with cold water
b. Clean protector occasionally with soap and cool water
c. Store the protector  in a rigid container
d. Protect from heat and pressure during storage
e. Evaluate protector routinely for evidence of deterioration

Properties

1. Physical-thermal insulators
2. Chemical-absorbs after during use
3. Mechanical-tensile strength, modulus, and hardness decrease after  water absorption, but elongation, tear strength, and resilience increase
4. Biologic-nontoxic as long as no bacterial, fungal, or viral growth occurs on surfaces between uses
 

Explore by Exams