NEET MDS Lessons
Dental Materials
Dental Porcelain and PFM Porcelains
Applications/Use
a. Porcelain inlays and jacket crowns
b. PFM crowns and bridges
c. Denture teeth
Terms
PFM-porcelain fused to metal
Fusing-adherence of porcelain particles into a single porcelain mass
Classification
Dental porcelain is manufactured as a powder. When it is heated to a very high temperature in a special oven, it fuses into a homogeneous mass. The heating process is called baking. Upon cooling, the mass is hard and dense. The material is made in a variety of shades to closely match most tooth colors. Baked porcelain has a translucency similar to that of dental enamel, so that porcelain crowns, pontics, and inlays of highly pleasing appearance can be made. Ingredients of porcelain include feldspar, kaolin, silica in the form of quartz, materials which act as fluxes to lower the fusion point, metallic oxide, and binders. Porcelains are classified into high-, medium-, and low-fusing groups, depending upon the temperature at which fusion takes place.
High-Fusing Porcelains. High-fusing porcelains fuse at 2,400o Fahrenheit or over. They are used for the fabrication of full porcelain crowns (jacket crowns).
Medium-Fusing Porcelains. Medium-fusing porcelains fuse between 2,000o and 2,400o Fahrenheit. They are used in the fabrication of inlays, crowns, facings, and pontics. A pontic is the portion of a fixed partial denture, which replaces a missing tooth.
Low-Fusing Porcelains. Low-fusing porcelains fuse between 1,600o and 2,000o Fahrenheit. They are used primarily to correct or modify the contours of previously baked high- or medium-fusing porcelain restorations. Eg for PFM restorations
Structure
Components
a. Large number of oxides but principally silicon oxide, aluminum oxide. and potassium oxide
b. Oxides are supplied by mixing clay, feldspar, and quartz.
Manipulation
Porcelain powders mixed with water and compacted into position for firing
Shrinkage is 30% on firing because of fusing and so must be made oversized and built up by several firing steps
Properties
1. Physical
a. Excellent electrical and thermal insulation
b. Low coefficient of thermal expansion and contraction
c. Good color and translucency; excellent aesthetics
2. Chemical
a. Not resistant to acids (and can be dissolved by contact with APF topical fluoride treatments)
b. Can be acid-etched with phosphoric acid or hydrofluoric acid for providing microll1echanical retention for cements
3. Mechanical
a. Harder than tooth structure and ,will cause opponent wear
b. Can be polished with aluminum oxide pastes
Manipulation
Selection
o Microfilled composites or hybrids for anterior class III, IV, V
o Hybrids or midifills for posterior class I, II, III, V
Conditioning of enamel and / or dentin
Do not apply fluorides before etching.-->Acid-etch --> Rinse for 20 seconds with water --> Air-dry etched area for 20 seconds but do not desiccate or dehydrate --> Apply bonding agent and polymerize
Mixing (if required)--> mix two pastes for 20 to 30 seconds
o Self-cured composite-working time is 60 to 120 seconds after mixing
o Light-cured composite-working time is unlimited (used for most anterior and some posterior composite restorations)
o Dual-cured composite-working time is > 10 minutes
o Two-stage cured composite-working time is >5 minutes
Placement
use plastic instrument or syringe --> Light curing --> Cure incrementally in <2 mm thick layers. Use matrix strip where possible to produce smooth surface and contour composite .Postcure to improve hardness
Introduction
The science of dental materials involves a study of the composition and properties of materials and the way in which they interact with the environment in which they are placed
Selection of Dental materials
The process of materials selection should ideally follow a logical sequence involving
(1) analysis of the problem,
(2) consideration of requirements,
(3) consideration of available materials and their properties, leading to
(4) choice of material.
Evaluation of the success or failure of a material may be used to influence future decisions on materials selection.
Reaction
a. Calcium sulfate hemihydrate(one-half water) crystals dissolve and react with water
b. Calcium sulfate dihydrate(two waters) form and precipitate new crystals
c. Unreacted (excess) water is left between crystals in solid
Root canal sealers
Applications
Cementation of silver cone gutta-percha point
Paste filling material
Types
Zinc oxide-eugenol cement types
Noneugenol cement types
Therapeutic cement types
properties
Physical-radiopacity
Chemical-insolubility
Mechanical-flow; tensile strength
Biologic-inertness
Gingival tissue packs
Application-provide temporary displacement of gingival tissues
Composition-slow setting zinc oxide-eugenol cement mixed with cotton twills for texture and strength
Surgical dressings
1.Application-gingival covering after periodontal surgery
2. Composition-modified zinc oxide-eugenol cement (containing tannic, acid. rosin, and various oils)
Orthodontic cements
Application-cementation of orthodontic bands
Composition-zinc phosphate cement
Manipulation
Zinc phosphate types are routinely mixed with cold or frozen mixing slab to extend the working time
Enamel bonding agent types use acid etching for improved bonding
Band, bracket, or cement removal requires special care
Mechanical properties
1. Resolution of forces
Uniaxial (one-dimensional) forces-compression, tension, and shear
Complex forces-torsion, flexion. And diametral
2. Normalization of forces and deformatations
Stress
Applied force (or material’s resistance to force) per unit area
Stress-force/area (MN/m2)
Strain
Change in length per unit of length because of force
Strain-(L- Lo)/(Lo); dimensionless units
3. Stress-strain diagrams
Plot of stress (vertical) versus strain (horizontal)
- Allows convenient comparison of materials
- Different curves for compression, tension, and shear
- Curves depend on rate of testing and temperature
4. Analysis of curves
- Elastic behavior
- Initial response to stress is elastic strain
- Elastic modulus-slope of first part of curve and represents stiffness of material or the resistance to deformation under force
- Elastic limit (proportional limit)- stress above which the material no longer behaves totally elastically
- Yield strength-stress that is an estimate of the elastic limit at 0.002 permanent strain
- Hardness-value on a relative scale that estimates the elastic limit in terms of a material’s resistance to indentation (Knoop hardness scale, Diamond pyramid, Brinnell, Rockwell hardness scale, Shore A hardness scale, Mohs hardness scale
- Resilience-area under the stress strain curve up to the elastic limit (and it estimates the total elastic energy that can be absorbed before the onset of plastic deformation)
- Elastic and plastic behavior
- Beyond the stress level of the elastic limit, there is a combination of elastic and plastic strain
- Ultimate strength-highest stress reached before fracture; the ultimate compressive strength is greater than the ultimate shear strength and the ultimate tensile strength
- Elongation (percent elongation)- percent change in length up to the point of fracture = strain x 100%
- Brittle materials-<5% elongation at fracture
- Ductile materials->5% elongation at fracture
- Toughness-area under the stress strain curve up to the point of fracture (it estimates the total energy absorbed up to fracture)
- Time-dependent behavior
the faster a stress is applied, the more likely a material is to store the energy elastically and not plastically
- Creep-strain relaxation
- Stress relaxation
Spruing Technique:
Direct Spruing:
The flow of the molten metal is straight(direct) from the casting crucible to pattern area in the ring. Even with the ball reservoir, the Spruing method is still direct. A basic weakness of direct Spruing is the potential for suck-back porosity at the junction of restoration and the Sprue.
Indirect Spruing:
Molten alloy does not flow directly from the casting crucible into the pattern area, instead the alloy takes a circuitous (indirect) route. The connector (or runner) bar is often used to which the wax pattern Sprue formers area attached. Indirect Spruing offers advantages such as greater reliability & predictability in casting plus enhanced control of solidification shrinkage .The Connector bar is often referred to as a “reservoir .
Armamentarium :
1 . Sprue
2 . Sticky wax
3 . Rubber crucible former
4 . Casting ring
5 . Pattern cleaner
6 . Scalpel blade & Forceps
7 . Bunsen burner