NEET MDS Lessons
Dental Materials
Manipulation
Selection
o Microfilled composites or hybrids for anterior class III, IV, V
o Hybrids or midifills for posterior class I, II, III, V
Conditioning of enamel and / or dentin
Do not apply fluorides before etching.-->Acid-etch --> Rinse for 20 seconds with water --> Air-dry etched area for 20 seconds but do not desiccate or dehydrate --> Apply bonding agent and polymerize
Mixing (if required)--> mix two pastes for 20 to 30 seconds
o Self-cured composite-working time is 60 to 120 seconds after mixing
o Light-cured composite-working time is unlimited (used for most anterior and some posterior composite restorations)
o Dual-cured composite-working time is > 10 minutes
o Two-stage cured composite-working time is >5 minutes
Placement
use plastic instrument or syringe --> Light curing --> Cure incrementally in <2 mm thick layers. Use matrix strip where possible to produce smooth surface and contour composite .Postcure to improve hardness
Applications/Use
- Load -bearing restorations for posterior teeth (class I, II)
- Pinned restorations
- Buildups or cores for cast restorations
- Retrograde canal filling material
(1) Alloy. An alloy is a solid mixture of two or more metals. It is possible to produce a material in which the desirable properties of each constituent are retained or even enhanced, while the less desirable properties are reduced or eliminated.
(2) Amalgam. When one of the metals in an alloy mixture is mercury, an amalgam is formed. A dental amalgam is a combination of mercury with a specially prepared silver alloy, which is used as a restorative material.
(3) Mercury. Mercury is a silver-white, poisonous, metallic element that is liquid at room temperature
Temporary Filling Materials
Applications / Use
While waiting for lab fabrication of cast restoration
While observing reaction of pulp tissues
Objectives
Provide pulpal protection
Provide medication to reduce pulpal inflammation
Maintain the tooth position with an aesthetic restoration
Classification
Temporary filling cements
Temporary filling resins
Components
Temporary filling cements
1. Zinc oxide-eugenol cement with cotton fibers added
2. Polyme r powder-reinforced zinc oxide eugenol cement
Temporary filling resins
• MMA / PMMA filling materials
• Polyamide filling materials
• BIS-GMA filling materials
Acrylic Appliances
Use - space maintenance or tooth movement for orthodontics and pediatric dentistry
1. Components
a. Powder-PMMA powder. peroxide initiator, and pigments
b. Liquid-MMA monomer, hydroquinone inhibitor, cross-linking agents, and chemical accelerators (N, N-dimethyl-p-toluidine)
2. Reaction
PMMA powder makes mixture viscous for manipulation before curing . Chemical accelerators cause decomposition of benzoyl peroxide into free radicals that initiate polymerization of monomer . New PMMA is formed into a matrix that surrounds PMMA powder. Linear shrinkage of 5% to 7% during setting. but dimensions of appliances are not critical
Principles of cutting, polishing, and surface cleaning
- Surface mechanics for materials
Cutting-requires highest possible hardness materials to produce cutting
Finishing-requires highest possible hardness materials to produce finishing, except at margins of restorations where tooth structure may be inadvertently affected
Polishing- requires materials with Mohs ./ hardness that is 1 to 2 units above that of substrate
Debriding-requires materials with Mohs hardness that is less than or equal to that of substrate to prevent scratching
- Factors affecting cutting, polishing. and surface cleaning
- Applied pressure
- Particle size of abrasive
- Hardness of abrasive
- Hardness of substrate
- Precautions
- During cutting heat will build up and change the mechanical behavior of the substrate from brittle to ductile and encourage smearing
- Instruments may transfer debris onto the cut surface from their own surfaces during cutting, polishing, or cleaning operations (this is important for cleaning implant surfaces)
Composition of Acrylic Resins.
· Powder. The powder is composed of a polymethyl methacrylate (PMMA), peroxide initiator, and pigments
· Liquid. The liquid is a monomethyl methacrylate (MMA), hydroquinone inhibitor, cross-linking agents, and chemical accelerators (N, N-dimethyl-p-toluidine)
Classification of Dental amalgam
1. By powder particle shape .
- Irregular (comminuted, filing, or lathecut)
- Spherical (spherodized)
- Blends (e.g., irregular-irregular, irregularspherical, or spherical-spherical)
2. By total amount of copper
- Low-copper alloys (e.g., conventional, traditional); <5% copper
- High-copper alloys (e,g. corrosion resistant); 12% to 28% copper
3.By presence of zinc
Examples
- Low-copper, irregular-particle alloy-silver (70%)-tin (26%)-copper (4%)
- High-copper, blended-particles alloy-irregular particles, silver (70%) –tin (26%) -Copper (4%); spherical particles, silver (72%)-copper (28%)
- High-copper, spherical-particles alloy-silver (60%) - tin (27%)-copper (13%)