Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Dental Materials

Manipulation

Selection

o    Microfilled composites or hybrids for anterior class III, IV, V
o    Hybrids or midifills for posterior class I, II, III, V

Conditioning of enamel and / or dentin

Do not apply fluorides before etching.-->Acid-etch --> Rinse for 20 seconds with water --> Air-dry etched area for 20 seconds but do not desiccate or dehydrate --> Apply bonding agent and polymerize

Mixing (if required)--> mix two pastes for 20 to 30 seconds

o    Self-cured composite-working time is 60 to 120 seconds after mixing
o    Light-cured composite-working time is unlimited (used for most anterior and some posterior composite restorations)
o    Dual-cured composite-working time is > 10 minutes
o    Two-stage cured composite-working time is >5 minutes

Placement

use plastic instrument or syringe --> Light curing --> Cure incrementally in <2 mm thick layers. Use matrix strip where possible to produce smooth surface and contour composite .Postcure to improve hardness
 

METALLURGICAL TERMS

a. Cold Working. This is the process of changing the shape of a metal by rolling, pounding, bending, or twisting at normal room temperature.

b. Strain Hardening. This occurs when a metal becomes stiffer and harder because of continued or repeated application of a load or force. At this point, no further slippage of the atoms of the metal can occur without fracture.

c. Heat Softening Treatment (Annealing). This treatment is necessary in order to continue manipulating a metal after strain hardening to prevent it from fracturing. The process of annealing consists of heating the metal to the proper temperature (as indicated by the manufacturer's instructions) and cooling it rapidly by immersing in cold water. Annealing relieves stresses and strains caused by cold working and restores slipped atoms within the metal to their regular arrangement.

d. Heat Hardening Treatment (Tempering). This treatment is necessary to restore to metals properties that are decreased by annealing and cold working. Metals to be heat hardened should first be heat softened (annealed) so that all strain hardening is relieved and the hardening process can be properly controlled. Heat hardening is accomplished in dental gold alloy by heating to 840o Fahrenheit, allowing it to cool slowly over a 15-minute period to 480o Fahrenheit, and then immersing it in water.

Stages of manipulation

Definitions of intervals

  • Mixing interval-length of time of the mixing stage.
  • Working interval-length of time of the working stage
  •  Setting interval-length of time of the setting stage

Definitions of times

  • Mixing time-the elapsed time from the onset to the completion of mixing
  • Working time-the elapsed time from the onset of mixing until the onset of the initial setting time
  • Initial setting time-time at which sufficient reaction has occurred  to cause the materials to be resistant to  further manipulation
  • Final setting time-time at which the material practically is set as defined by its resistance to indentation

[All water-based materials lose their gloss at the time of setting]

Cement Bases

Applications

•    Thermal insulation below a restoration
•    Mechanical protection where there is inadequate dentin to support amalgam condensation pressures

Types

•    Zinc phosphate cement bases
•    Polycarboxylate cement bases
•    Glass ionomer cement bases (self-curing and light-curing)

Components

o    Reactive powder (chemically basic)
o    Reactive liquid (chemically acidic)

Reaction

o    Acid-base reaction that forms salts or cross linked matrix
o    Reaction may be exothermic

Manipulation-consistency for basing includes more powders, which improves all of the cement properties

Properties

Physical-excellent thermal and electrical insulation

Chemical-much more resistant to dissolution than cement liners

    Polycarboxylate and glass ionomer cements are mechanically and chemically adhesive to tooth structure

    Solubility of all cement bases is lower than cement liners if they are mixed at higher powder- to-liquid ratios

Mechanical- much higher compressive strengths (12,000 to 30,000 psi)
  
 Light-cured hybrid glass ionomer cements are the strongest
    Zinc oxide-eugenol cements are the weakest

Biologic (see section on luting cements for details)

    Zinc oxide-eugenol cements are obtundent to the pulp
    Polycarboxylate and glass ionomer cements are kind to the pulp
 

Denture Cleansers

Use -  for removal of soft debris by light brushing and then rinsing of denture; hard deposits require professional repolishing

a. Alkaline perborates-do not remove bad stains; may harm liners .
b. Alkaline peroxides-harmful to denture liners
c. Alkaline hypochlorites-may cause bleaching, corrode base-metal alloys, and leave residual taste on appliance
d. Dilute acids-may corrode base-metal alloys
e. Abrasive powders and creams-can abrade denture surfaces

Denture cleaning Method

a. Full dentures without soft liners-immerse denture in solution of one part 5% sodium hypochlorite in three parts of water
b. Full or partial dentures without soft-liners immerse denture in solution of  1 teaspoon of hypochlorite with 2 teaspoons of  glassy phosphate  in a half of a glass of water
c. Lined dentures -- clean any soft liner with a cotton swab and cold water while cleaning the denture with a soft brush

Properties

1. Chemical-can swell plastic surfaces or corrode metal frameworks
2. Mechanical-can scratch the surfaces of denture bases or denture teeth
 

Properties of Acrylic Resins.

  • They have a low thermal conductivity. These resins are not easily washed out by the acids of the oral cavity (low solubility). Acrylic resins are also resilient, which allows them to be used in stress-bearing areas.
  • Acrylic resins exhibit a moderate shrinkage of from 3 to 8 percent. This shrinkage and low marginal strength can lead to marginal leakage. Acrylic resins have a low resistance to wear. Acrylic resins cannot be used over a zinc oxide and eugenol-type base because eugenol interferes with the acrylic curing process.
  • Mixing. Insufficient mixing will cause an uneven color or streaks in the mixture. Overmixing will cause the material to harden before it can be placed
  • Poor distortion resistance at higher temperatures, therefore dentures should not be cleaned in hot water
  • Good resistance to color change
  • Absorbs water and must be kept hydrated  (stored in water when not in mouth) to prevent dehydration cycling and changes in dimensions
  • Not resistant to strong oxidizing agents
  • Low strength; however, flexible, with good fatigue resistance
  • Poor scratch resistance; clean tissue-bearing surfaces of denture with soft brush and do not use abrasive cleaners

ACID ETCH TECHNIQUE

Cavities requiring added retention (to hold firmly) are treated with an acid etching technique. This technique improves the seal of the composite resin to the cavity wall. The enamel adjacent to the margins of the preparation is slightly decalcified with a 40 to 50 percent phosphoric acid solution. This etched enamel enhances the mechanical retention of the composite resin. In addition, the acid etch technique is used to splint unstable teeth to adjacent teeth. The acid is left on the cut tooth structure only 15 seconds, in accordance with the directions for one common commercial brand. The area is then flushed with water for a minimum of 30 seconds to remove the decalcified material. Etched tooth structure will have a chalky appearance.

DISTORTION OF THE PATTERN

Distortion is dependant on temperature & time interval before investing .
To avoid any distortion ,
Invest the pattern as soon as possible .
Proper handling of the pattern .

PREREQUISITES
Wax pattern should be evaluated for smoothness , finish & contour .
Pattern is inspected under magnification & residual flash is removed .

Explore by Exams