Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Dental Materials

COMPOSITE RESINS

Types

  • Amount of filler-25% to 65% volume, 45% to 85% weight
  • Filler particle size (diameter in microns)
    • Macrofill 10 to 100 µm (traditional composites)
    • Midi fill- 1 to 10 µm(small particle composites)
    • Minifill— 0.l to 1 µm
    • Microfill-: 0.01 to  0.1 µm (fine particle composites)
    • Hybrid--blend (usually or  microfill and midifill or minifill and microfill)
  • Polymerization method
    • Auto-cured (self-cured)
    • Visible light cured
    • Dual cured
    • Staged cure
  • Matrix chemistry
    • BIS-GMA type
    • Urethane dimethacrylate (UDM or UDMA) type
    • TEGDMA-diluent monomer to reduce  viscosity

ACID ETCH TECHNIQUE

Cavities requiring added retention (to hold firmly) are treated with an acid etching technique. This technique improves the seal of the composite resin to the cavity wall. The enamel adjacent to the margins of the preparation is slightly decalcified with a 40 to 50 percent phosphoric acid solution. This etched enamel enhances the mechanical retention of the composite resin. In addition, the acid etch technique is used to splint unstable teeth to adjacent teeth. The acid is left on the cut tooth structure only 15 seconds, in accordance with the directions for one common commercial brand. The area is then flushed with water for a minimum of 30 seconds to remove the decalcified material. Etched tooth structure will have a chalky appearance.

METALLURGICAL TERMS

a. Cold Working. This is the process of changing the shape of a metal by rolling, pounding, bending, or twisting at normal room temperature.

b. Strain Hardening. This occurs when a metal becomes stiffer and harder because of continued or repeated application of a load or force. At this point, no further slippage of the atoms of the metal can occur without fracture.

c. Heat Softening Treatment (Annealing). This treatment is necessary in order to continue manipulating a metal after strain hardening to prevent it from fracturing. The process of annealing consists of heating the metal to the proper temperature (as indicated by the manufacturer's instructions) and cooling it rapidly by immersing in cold water. Annealing relieves stresses and strains caused by cold working and restores slipped atoms within the metal to their regular arrangement.

d. Heat Hardening Treatment (Tempering). This treatment is necessary to restore to metals properties that are decreased by annealing and cold working. Metals to be heat hardened should first be heat softened (annealed) so that all strain hardening is relieved and the hardening process can be properly controlled. Heat hardening is accomplished in dental gold alloy by heating to 840o Fahrenheit, allowing it to cool slowly over a 15-minute period to 480o Fahrenheit, and then immersing it in water.

Stages of manipulation

Definitions of intervals

  • Mixing interval-length of time of the mixing stage.
  • Working interval-length of time of the working stage
  •  Setting interval-length of time of the setting stage

Definitions of times

  • Mixing time-the elapsed time from the onset to the completion of mixing
  • Working time-the elapsed time from the onset of mixing until the onset of the initial setting time
  • Initial setting time-time at which sufficient reaction has occurred  to cause the materials to be resistant to  further manipulation
  • Final setting time-time at which the material practically is set as defined by its resistance to indentation

[All water-based materials lose their gloss at the time of setting]

Zinc Phoshate Cement

Uses. Zinc phosphate cement is used both as an intermediate base and as a cementing medium. 

(1) Intermediate base. A thick mix  is used under permanent metallic restoration. This layer of cement protects the pulp from sudden temperature changes that may be transmitted by the metallic restoration. 

(2) Cementing medium. Zinc phosphate cement is used to permanently cement crowns, inlays, and fixed partial dentures upon the remaining tooth structure. A creamy mix of cement is used to seat the restoration or appliance completely into place. The cementing medium does not cement two objects together. Instead, the cement holds the objects together by mechanical interlocking, filling the space between the irregularities of the tooth preparation and the cemented restoration

c. Chemical Composition. 

(1) Powder. primary ingredients - zinc oxide and magnesium oxide. 
(2) Liquid. Phosphoric acid and water in the ratio of two parts acid to one part water. The solution may also contain aluminum phosphate and zinc phosphate Liquids exposed in open bottles will absorb moisture from the air in high humidity. The liquids will lose moisture if humidity is low. Water gain hastens setting; water loss lengthens setting time.
 
PROPERTIES OF ZINC PHOSPHATE CEMENT

a. Advantages. Some advantages of zinc phosphate cement as a cementing medium are:

o    Inconspicuous appearance. 
o    Speed and ease of usage. 
o    Sufficient flow to form a thin layer for the cementing of closely adapted crowns, fixed partial dentures, and inlays. 
o    Low thermal conductivity beneath a metallic restoration.

b. Disadvantages. Some disadvantages of zinc phosphate cement as a cementing medium are:

o    Low crushing strength that varies between 12,000 and 19,000 psi. 
o    Slight solubility in mouth fluids. 
o    Opaque material not suitable for visible surfaces. 

c. Strength. The ratio of powder to liquid increases the strength of phosphate cements to a certain point. For this reason, the dental specialist must use as thick a mix as practical for the work being performed. 

SETTING REACTIONS OF ZINC PHOSPHATE CEMENT 

a. Chemical Reaction. The chemical reaction that takes place between the powder and liquid of setting phosphate cement produces heat. The amount of heat produced depends upon the rate of reaction, the size of the mix, and the amount of heat extracted by the mixing slab. 

b. Powder to Liquid Ratio. The less powder used in ratio to the liquid, the longer the cement will take to harden. Good technique minimizes the rise in temperature and acidity of the setting cement that can injure the pulp. Generally, for increased strength, decreased shrinkage, and resistance to solubility, it is advisable to blend as much powder as possible to reach the desired consistencies. 

c. Setting Time. The setting time of zinc phosphate cement is normally between 5 and 9 minutes. 
 Lower the temperature of the glass mixing slab to between 65° and 75° F (18° to 24° C), if the glass mixing slab is not already cooled below the temperature at which moisture will condense on it. → Blend the powder slowly. →  Mix the powder over a large area of the cool slab. →  Use a longer mixing time, within optimum limits. 
 
Precautions.
The following precautions should be observed. 

o    Prevent loss or gain of moisture in liquid cement by keeping bottles tightly stoppered. 
o    Dispense drops only when ready to mix. 
o    Use a cool, dry glass slab (65° to 75° F). 
o    Use the same brand of powder and liquid. 
o    Add increments of powder slowly. 
o    Use the maximum amount of powder to obtain the desired consistency. 

(To incorporate the most powder, the material should be mixed with a moderate circular motion over a large area of the slab, turning the spatula often.) 

Chromium Alloys for Partial Dentures

Applications - Casting partial denture metal frameworks

Classification

a. Cobalt-chromium
b. Nickel-chromium
c. Cobalt-chromium-nickel

Composition

a. Chromium-produces a passivating oxide film for corrosion resistance
b. Cobalt-increase~ the rigidity of the alloy
c. Nickel-increases the ductility of the alloy
d. Other elements-increase strength and castability

Manipulation

a. Requires higher temperature investment materials
b. More difficult to cast because less dense than gold alloys usually requires special casting equipment
c. Much more difficult to finish and polish because of higher strength and hardness

Properties

a. Physical-less dense_than gold alloys
b. Chemical-passivating corrosion behavior
c. Mechanical-stronger. stiffer. and harder than gold alloys
d. Biologic

-Nickel may cause sensitivity in some individuals (I % of men and 11 % of women)
-Beryllium in some alloys forms oxide that  is toxic to lab technicians

Cement Bases

Applications

•    Thermal insulation below a restoration
•    Mechanical protection where there is inadequate dentin to support amalgam condensation pressures

Types

•    Zinc phosphate cement bases
•    Polycarboxylate cement bases
•    Glass ionomer cement bases (self-curing and light-curing)

Components

o    Reactive powder (chemically basic)
o    Reactive liquid (chemically acidic)

Reaction

o    Acid-base reaction that forms salts or cross linked matrix
o    Reaction may be exothermic

Manipulation-consistency for basing includes more powders, which improves all of the cement properties

Properties

Physical-excellent thermal and electrical insulation

Chemical-much more resistant to dissolution than cement liners

    Polycarboxylate and glass ionomer cements are mechanically and chemically adhesive to tooth structure

    Solubility of all cement bases is lower than cement liners if they are mixed at higher powder- to-liquid ratios

Mechanical- much higher compressive strengths (12,000 to 30,000 psi)
  
 Light-cured hybrid glass ionomer cements are the strongest
    Zinc oxide-eugenol cements are the weakest

Biologic (see section on luting cements for details)

    Zinc oxide-eugenol cements are obtundent to the pulp
    Polycarboxylate and glass ionomer cements are kind to the pulp
 

Introduction

The science of dental materials involves a study of the composition and properties of materials and the way in which they interact with the environment in which they are placed

Selection of Dental materials

The process of materials selection should ideally follow a logical sequence involving

(1) analysis of the problem,

(2) consideration of requirements,

(3) consideration of available materials and their properties, leading to

(4) choice of material.

Evaluation of the success or failure of a material may be used to influence future decisions on materials selection.

Explore by Exams