Talk to us?

Dental Materials - NEETMDS- courses
NEET MDS Lessons
Dental Materials

The Sprue :

Its a channel through which molten alloy can reach the mold in an invested ring after the wax has been eliminated. Role of a Sprue: Create a channel to allow the molten wax to escape from the mold. Enable the molten alloy to flow into the mold which was previously occupied by the wax pattern.

FUNCTIONS OF SPRUE

1 . Forms a mount for the wax pattern .
2 . Creates a channel for elimination of wax .
3 .Forms a channel for entry of molten metal
4 . Provides a reservoir of molten metal to compensate for the alloy shrinkage .

SELECTION OF SPRUE

Sprue former gauge selection is often empirical, is yet based on the following five general principles:
1.   Select the gauge sprue former with a diameter that is approximately the same size as the thickest area of the wax pattern. If the pattern is small, the sprue former must also be small because a large sprue former attached to a thin delicate pattern could cause distortion. However if the sprue former diameter is too small this area will solidify before the casting itself and localized shrinkage porosity may result.
2.   If possible the sprue former should be attached to the portion of the pattern with the largest cross-sectional area. It is best for the molten alloy to flow from the thick section to the surrounding thin areas. This design minimizes the risk of turbulence.
3.   The length of the sprue former should be long enough to properly position the pattern in the casting ring within 6mm of the trailing end and yet short enough so the molten alloy does not solidify before it fills the mold.
4.   The type of sprue former selected influences the burnout technique used. It is advisable to use a two-stage burnout technique whenever plastic sprue formers or patterns are involved to ensure complete carbon elimination, because plastic sprues soften at temperatures above the melting point of the inlay waxes.
5.   Patterns may be sprued directly or indirectly. For direct sprueing the sprue former provides the direct connection between the pattern area and the sprue base or crucible former area. With indirect spruing a connector or reservoir bar is positioned between the pattern and the crucible former. It is common to use indirect spruing for multiple stage units and fixed partial dentures.

Classification of Dental amalgam

1. By powder particle shape .

  • Irregular (comminuted, filing, or lathecut)
  • Spherical (spherodized)
  • Blends (e.g., irregular-irregular, irregularspherical, or spherical-spherical)

2. By total amount of copper

  • Low-copper alloys (e.g., conventional, traditional); <5% copper
  • High-copper alloys (e,g.  corrosion resistant); 12% to 28% copper

3.By presence of zinc

Examples

  • Low-copper, irregular-particle alloy-silver (70%)-tin (26%)-copper (4%)
  • High-copper, blended-particles alloy-irregular particles, silver (70%) –tin (26%) -Copper (4%); spherical particles, silver (72%)-copper (28%)
  • High-copper, spherical-particles alloy-silver (60%) - tin (27%)-copper (13%)

CAD/CAM Restorations

Applications-inlays, onlays, veneers, crowns, bridges, implants, and implant prostheses    

Stages of fabrication
 
CSD-computerized surface digitization
CAD-computer-aided (assisted) design
CAM-computer-aided (assisted) machining
CAE-computer-aided esthetics (currently theoretic)
CAF-computer-aided finishing or polishing (which are currently theoretic steps)

Classification

Chairside or in-office systems

(1) Cerec (Siemens system)-inlays, onlays, veneers
(2) Sopha (Duret system)-inlays, onlays  (and Crowns)

Laboratory systems

(1) DentiCAD (Rekow system)-inlay, onlays, veneers, crowns
(2) Cicero (Elephant system)-porcelain fused-to-metal crowns

 
Materials

a. Feldspathic oorcelains (Vita)
b. Machinable ceramics (Dicor MGC)
c. Metal alloys limited use)

Cementing

- Etching enamel and/or dentin for micromechanical retention
- Bonding agent for retention to etched surface
- Composite as a luting cement for reacting chemically with bonding agent and with silanated surface of restoration
- Silane for bonding to etched ceramic (or metal) restorations and to provide chemical reaction
- Hydrofluoric acid etching to create spaces for micromechanical retention on surface or restoration

Properties

1. Physical properties

a. Thermal expansion coefficient well matched to tooth structure
b. Good resistance to plaque adsorption or retention

2. Chemical properties-not resistant to acids and should be protected from APF

3. Mechanical properties

a. Excellent wear resistance (but may abrade opponent teeth)
b. Some wear of luting cements but self-limiting
c. Excellent toothbrush abrasion

4. Biologic properties-excellent properties
 

Properties-improve with filler content

Physical

Radiopacity depends on ions in silicate glass or the addition of barium sulfate (many systems radiolucent)
Coefficient of thermal expansion is 35 to 45 ppm/C and decreases with increasing filler content
Thermal and electrical insulators

Chemical

Water absorption is 0.5 % to 2.5% and increases with polymer level)
Acidulated topical fluorides (e.g., APF) tend to dissolve glass particles, and thus composites should be protected with petroleum jelly (Vaseline) during those procedures
Color changes occur in resin matrix with time because of oxidation, which produces colored by-products

Mechanical

Compressive strength is 45,000 to 60,000 lb/ in2, which is adequate
Wear resistance-improves with higher filler content, higher percentage of conversion in curing, and use of microfiller, but it is not adequate for some posterior applications
Surfaces rough from wear retain plaque and stain more readily

Biologic

Components may be cytotoxic, but cured composite is biocompatible as restorative filling material

Applications/Use

  • Load -bearing restorations for posterior  teeth  (class I, II)
  • Pinned restorations
  • Buildups or cores for cast restorations
  • Retrograde canal filling material

 

 (1) Alloy. An alloy is a solid mixture of two or more metals. It is possible to produce a material in which the desirable properties of each constituent are retained or even enhanced, while the less desirable properties are reduced or eliminated.

(2) Amalgam. When one of the metals in an alloy mixture is mercury, an amalgam is formed. A dental amalgam is a combination of mercury with a specially prepared silver alloy, which is used as a restorative material.

(3) Mercury. Mercury is a silver-white, poisonous, metallic element that is liquid at room temperature

ACID ETCH TECHNIQUE

Cavities requiring added retention (to hold firmly) are treated with an acid etching technique. This technique improves the seal of the composite resin to the cavity wall. The enamel adjacent to the margins of the preparation is slightly decalcified with a 40 to 50 percent phosphoric acid solution. This etched enamel enhances the mechanical retention of the composite resin. In addition, the acid etch technique is used to splint unstable teeth to adjacent teeth. The acid is left on the cut tooth structure only 15 seconds, in accordance with the directions for one common commercial brand. The area is then flushed with water for a minimum of 30 seconds to remove the decalcified material. Etched tooth structure will have a chalky appearance.

CRUCIBLE FORMER

It serves as a base for the casting ring during investing .Usually convex in shape.
May be metal , plastic or rubber .
Shape depends on casting machine used .
Modern machines use tall crucible to enable the pattern to be positioned near the end of the casting machine .

Explore by Exams