Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Dental Materials

Manipulation

Selection

o    Microfilled composites or hybrids for anterior class III, IV, V
o    Hybrids or midifills for posterior class I, II, III, V

Conditioning of enamel and / or dentin

Do not apply fluorides before etching.-->Acid-etch --> Rinse for 20 seconds with water --> Air-dry etched area for 20 seconds but do not desiccate or dehydrate --> Apply bonding agent and polymerize

Mixing (if required)--> mix two pastes for 20 to 30 seconds

o    Self-cured composite-working time is 60 to 120 seconds after mixing
o    Light-cured composite-working time is unlimited (used for most anterior and some posterior composite restorations)
o    Dual-cured composite-working time is > 10 minutes
o    Two-stage cured composite-working time is >5 minutes

Placement

use plastic instrument or syringe --> Light curing --> Cure incrementally in <2 mm thick layers. Use matrix strip where possible to produce smooth surface and contour composite .Postcure to improve hardness
 

Dental Implants

Applications/Use
 
Single-tooth implants
Abutments for bridges (freestanding, attached to natural teeth)
Abutments for over dentures

Terms

Subperiosteal- below the periosteum -but above the bone (second most frequently used types)
Intramucosal-within the mucosa
Endosseous into the bone  (80%of all current types)
Endodontics-through the root canal space and into the periapical bone
Transosteal-through the bone
Bone substitutes -replace. Long bone

Classification by geometric form

Blades
Root forms
Screws
Cylinders
Staples
Circumferential
Others

Classification by materials type

Metallic-titanium, stainless steel, and .chromium cobalt
Polymeric-PMMA
Ceramic hydroxyapatite, carbon, and sapphire

Classification by attachment design

Bioactive surface retention by osseointegration
Nonative porous surfaces for micromechanical retention by osseointegration
Nonactive, nonporous surface for ankylosis. By osseointegration 
Gross mechanical retention designs (e.g.. threads, screws, channels, or transverse holes)
Fibrointegration by formation of fibrous tissue capsule
Combinations of the above


Components

a. Root (for. osseointegration)
b. Neck (for epithelial attachment and percutancaus sealing)
c. Intramobile elements (for shock absorption)
d. Prosthesis (for dental form and function)

Manipulation

a. Selection-based on remaining bone architecture and dimensions
b. Sterilization-radiofrequency glow discharge leaves biomaterial surface uncontaminated and sterile; autoclaving or chemical sterilization is contraindicated for some designs

Properties

1. Physical-should have low thermal and electrical conductivity

2. Chemical

a. Should be resistant to electrochemical corrosion
b. Do not expose surfaces to acids (e.g.. APF fluorides).
c. Keep in mind the effects of adjunctive therapies (e.g., Peridex)

3. Mechanical
a. Should be abrasion resistant and have a high modulus
b. Do not abrade during scaling operations (e.g.with metal scalers or air-power abrasion systems like  Prophy iet)

4. Biologic-depend on osseointegration and epithelial attachment


 

Wax elimination (burnout):

Wax elimination or burnout consists of heating the investment in a thermostatically controlled furnace until all traces of the wax are vaporized in order to obtain an empty mold ready to receive the molten alloy during procedure.

• The ring is placed in the furnace with the sprue hole facing down to allow for the escape of the molten wax out freely by the effect of gravity .
• The temperature reached by the investment determines thethermal expansion. The burnout temperature is slowly increased in order to eliminate the wax and water without cracking the investment.
•For gypsum bonded investment, the mold is heated to650 -6870 c )to cast precious and semiprecious
precious alloys.
• Whereas for phosphate-bonded investment, the mold is heated up to 8340 c to cast nonprecious alloys at high fusing temperature.
The ring should be maintained long enough at the maximum temperature (“heat soak”) to minimize a sudden drop in temperature upon removal from the oven. Such a drop could result in an incomplete casting because of excessively rapid solidification of thealloy as it enters the mold.
• When transferring the casting ring to casting, a quick visual check of the sprue in shaded light is helpful to see whether it is properly heated. It should be a cherry-red color .

WAX BURNOUT AND HEATING THE RING

After the investment has set hard, the crucible former and the metal sprue former is removed carefully, and any loose particles at the opening of the sprue hole are removed with small brush.
The purpose of the wax burnout is to make room for the liquid metal. The ring is placed in the oven at 250C with the sprue end down, thus allowing the melted wax to flow, out for 30min or even up to 60min may be a good procedure to ensure complete elimination of the wax and the carbon.

Heating the ring: The object is to create a mold of such dimension, condition and temperature so that it is best suited to receive the metal.

Hygroscopic Low-Heat Technique. 

After the wax elimination the temperature of the same furnace can be set to a higher temperature for heating or else, the ring can be transferred to another furnace, which has already set to the higher temperature. In any case accurate temperature control is essential and therefore these furnaces have pyrometer and thermocouple arrangement. The ring is placed in the furnace with the sprue hole down and heated to 500C and kept at this temperature for 1 hour. In this low heat technique the thermal expansion obtained is less but together with the previously obtained hygroscopic expansion the total expansion amounts to 2.2 percent, which is slightly higher than what is required for gold alloys.

So this technique obtains its compensation expansion from three sources:
(1)   The 37º C water bath expands the wax pattern
(2)   The warm water entering the investment mold from the top adds some hygroscopic expansion
(3)   The thermal expansion at 500' C provides the needed thermal expansion.

High-Heat Thermal Expansion Technique. 

After the wax elimination, the ring should be placed in the furnace which is at room temperature and then the temperature is gradually raised, until it comes to 700C in 1 hour. Then the ring is heat soaked at this temperature for ½ hour. This slow rise in temperature is necessary to prevent 
This approach depends almost entirely on high-heat burnout to obtain the required expansion, while at the same time eliminating the wax pattern.  Additional expansion results from the slight heating of gypsum investments on setting, thus expanding the wax pattern, and the water entering the investment from the wet liner, which adds a small amount of hygroscopic expansion to the normal setting expansion.

Mercury bioactivity

  • Metallic mercury is the least toxic from and is absorbed primarily through the lungs rather than the GI tract or skin
  • Mercury in the body may come from air, water, food. dental (a low amount). Or medical sources
  •  Half life for mercury elimination from body is 55 days .-
  • mercury toxicity is <50 µm / m3 on average per 40-hour work week.
  • Mercury hypersensitivity is estimated as less than 1 per 100,000,000 persons
  • Indium-containing amalgams can have lower Hg vapor pressures than conventional dental amalgam

Properties

I. Physical

a. Excellent thermal and electrical insulator
b. Very dense
c. Excellent dimensional stability
d. Good reproduction of fine detail of hard and soft tissues

2. Chemical

a. Heating will reverse the reaction (decompose the material into calcium sulfate hemihydrate, the original dry component)
b. Models, casts, and dies should be wet during grinding or cutting operations to prevent heating

3. Mechanical

a. Better powder packing and lower water contents at mixing lead to higher compressive strengths (plaster < stone < diestone)
b. Poor resistance to abrasion

4. Biologic

a. Materials are safe for contact with external - epithelial tissues
b. Masks should be worn during grinding or polishing operations that are likely to produce gypsum dust

COMPOSITE RESINS

Components

  • Filler particles-colloidal silica, crystalline silica (quartz), or silicates of various particle sizes (containing Li, AI, Zn, Yr)
  • Matrix-BIS-GMA (or UDMA) with lower molecular weight diluents (e.g., TEGDMA) that correct during polymerization
  • Coupling agent- silane that chemically bonds the surfaces of the filter particles to the polymer matrix

POLISHING MATERIALS

1 Tin Oxide. Tin oxide is used in polishing teeth and metal restorations. Tin oxide is a fine, white powder that is made into a paste by adding water or glycerin.

2. Pumice. Pumice is used as an abrasive and polishing agent for acrylic resins, amalgams, and gold. It consists mainly of complex silicates of aluminum, potassium, and sodium. Two grades--flour of pumice and coarse pumice--are listed in the Federal Supply Catalog.

3. Chalk (Whiting). Chalk is used for polishing acrylic resins and metals. It is composed primarily of calcium carbonate.

4.Tripoli. Tripoli is usually used for polishing gold and other metals. It is made from certain porous rocks.

5. Rouge (Jeweler's). Rouge is used for polishing gold and is composed of iron oxide. It is usually in cake or stick form.

6. Zirconium Silicate. Zirconium silicate is used for cleaning and polishing teeth. It may be mixed with water or with fluoride solution for caries prevention treatment. For full effectiveness, instructions must be followed exactly to obtain the proper proportions of powder to liquid.

Explore by Exams