NEET MDS Lessons
Dental Materials
COMPOSITE RESINS
Reaction
- Free radical polymerization
Monomers + initiator. + accelerators-+ polymer molecules
- Initiators-start polymerization by decomposing and reacting with monomer
- Accelerators-speed up initiator decomposition
- Amines used for accelerating self –curing systems
- Light used for accelerating light-curing systems
Retarders or inhibitors-prevent premature polymerization
PROPERTY |
INGREDIENT |
|||
|
Silver |
Tin |
Copper |
Zinc |
Strength |
Increases |
|
|
|
Durability |
Increases |
|
|
|
Hardness |
|
|
Increases |
|
Expansion |
Increases |
Decreases |
Increases |
|
Flow |
Decreases |
Increases |
Decreases |
|
Color |
Imparts |
|
|
|
Setting time |
Decreases |
Increases |
Decreases |
|
Workability |
|
Increases |
|
Increases |
|
Wax elimination (burnout):
Wax elimination or burnout consists of heating the investment in a thermostatically controlled furnace until all traces of the wax are vaporized in order to obtain an empty mold ready to receive the molten alloy during procedure.
• The ring is placed in the furnace with the sprue hole facing down to allow for the escape of the molten wax out freely by the effect of gravity .
• The temperature reached by the investment determines thethermal expansion. The burnout temperature is slowly increased in order to eliminate the wax and water without cracking the investment.
•For gypsum bonded investment, the mold is heated to650 -6870 c )to cast precious and semiprecious
precious alloys.
• Whereas for phosphate-bonded investment, the mold is heated up to 8340 c to cast nonprecious alloys at high fusing temperature.
The ring should be maintained long enough at the maximum temperature (“heat soak”) to minimize a sudden drop in temperature upon removal from the oven. Such a drop could result in an incomplete casting because of excessively rapid solidification of thealloy as it enters the mold.
• When transferring the casting ring to casting, a quick visual check of the sprue in shaded light is helpful to see whether it is properly heated. It should be a cherry-red color .
WAX BURNOUT AND HEATING THE RING
After the investment has set hard, the crucible former and the metal sprue former is removed carefully, and any loose particles at the opening of the sprue hole are removed with small brush.
The purpose of the wax burnout is to make room for the liquid metal. The ring is placed in the oven at 250C with the sprue end down, thus allowing the melted wax to flow, out for 30min or even up to 60min may be a good procedure to ensure complete elimination of the wax and the carbon.
Heating the ring: The object is to create a mold of such dimension, condition and temperature so that it is best suited to receive the metal.
Hygroscopic Low-Heat Technique.
After the wax elimination the temperature of the same furnace can be set to a higher temperature for heating or else, the ring can be transferred to another furnace, which has already set to the higher temperature. In any case accurate temperature control is essential and therefore these furnaces have pyrometer and thermocouple arrangement. The ring is placed in the furnace with the sprue hole down and heated to 500C and kept at this temperature for 1 hour. In this low heat technique the thermal expansion obtained is less but together with the previously obtained hygroscopic expansion the total expansion amounts to 2.2 percent, which is slightly higher than what is required for gold alloys.
So this technique obtains its compensation expansion from three sources:
(1) The 37º C water bath expands the wax pattern
(2) The warm water entering the investment mold from the top adds some hygroscopic expansion
(3) The thermal expansion at 500' C provides the needed thermal expansion.
High-Heat Thermal Expansion Technique.
After the wax elimination, the ring should be placed in the furnace which is at room temperature and then the temperature is gradually raised, until it comes to 700C in 1 hour. Then the ring is heat soaked at this temperature for ½ hour. This slow rise in temperature is necessary to prevent
This approach depends almost entirely on high-heat burnout to obtain the required expansion, while at the same time eliminating the wax pattern. Additional expansion results from the slight heating of gypsum investments on setting, thus expanding the wax pattern, and the water entering the investment from the wet liner, which adds a small amount of hygroscopic expansion to the normal setting expansion.
CASTING: casting is the process by which the wax pattern of a restoration is converted to a replicate in a dental alloy. The casting process is used to make dental restorations such as inlays, onlays, crowns, bridges and removable partial dentures.
Objectives of casting
1) To heat the alloy as quickly as possible to a completely molten condition.
2) To prevent oxidation by heating the metal with awell adjusted torch .
3) To produce a casting with sharp details by having adequate pressure to the well melted metal to force into the mold.
STEPS IN MAKING A CAST RESTORATION
1. TOOTH PREPARATION
2. IMPRESSION
3. DIE PREPARATION
4. WAX PATTERN FABRICATION
5. SPRUING
COMPOSITE RESINS
Applications / Use
- Anterior restorations for aesthetics (class III, IV, V, cervical erosion abrasion lesions)
- Low-stress posterior restorations (small class I, II)
- Veneers
- Cores for cast restorations
- Cements for porcelain restorations
- Cements for acid-etched Maryland bridges
- Repair systems for composites or porcelains
Polymerization--reaction of small molecules (monomers) into very large molecules (polymers)
Cross-linking-tying together of polymer molecules by chemical reaction between the molecules to produce a continuous three-dimensional network
Dental Solders
Applications-bridges and orthodontic appliances
Terms
Soldering -joining operation using filler metal that melts below 500° C
Brazing -joining operation using filler metal that melts above 500°C
Welding-melting and alloying of pieces to be joined
Fluxing
-Oxidative cleaning of area to be soldered
- Oxygen scavenging to prevent oxidation of alloy being soldered
16- 650 -- 650 fineness solder to be used with 16-karat alloys; fineness refers to the gold content
Classification
a. Gold solders-bridges
b. Silver solders-gold-substitute bridges and orthodontic alloys
Structure of gold solders
Composition-lower gold content than of alloys being soldered
Manipulation-solder must melt below melting temperature of alloy
Properties
1. Physical-similar to alloys being joined
2. Chemical-more prone to chemical and electrochemical corrosion
3. Mechanical-similar to alloy being joined
4. Biologic-similar to alloys being joined
Properties-improve with filler content
Physical
Radiopacity depends on ions in silicate glass or the addition of barium sulfate (many systems radiolucent)
Coefficient of thermal expansion is 35 to 45 ppm/C and decreases with increasing filler content
Thermal and electrical insulators
Chemical
Water absorption is 0.5 % to 2.5% and increases with polymer level)
Acidulated topical fluorides (e.g., APF) tend to dissolve glass particles, and thus composites should be protected with petroleum jelly (Vaseline) during those procedures
Color changes occur in resin matrix with time because of oxidation, which produces colored by-products
Mechanical
Compressive strength is 45,000 to 60,000 lb/ in2, which is adequate
Wear resistance-improves with higher filler content, higher percentage of conversion in curing, and use of microfiller, but it is not adequate for some posterior applications
Surfaces rough from wear retain plaque and stain more readily
Biologic
Components may be cytotoxic, but cured composite is biocompatible as restorative filling material