NEET MDS Lessons
Pharmacology
Mucosal protective agents.
These are locally active agents that help heal gastric and duodenal ulcers by forming a protective barrier between the ulcers and gastric acid, pepsin, and bile salts. They do not alter the secretion of gastric acid. These drugs include sucralfate and colloid bismuth compounds. (e.g. tripotassium, dicitratobismuthate). Colloidal bismuth compounds additionally exert bactericidal action against H.pylori. Also, Prostaglandins have both antisecretory and mucosal protective effects.
Example: Misoprostol- used for prevention of NSAID – induced ulcer.
- Drugs that exert antimicrobial action against H.pylori such as amoxicillin, metronidazole, clarithromycin and tetracycline are included in the anti-ulcer treatment regimens.
Nalidixic acid:
Nalidixic acid is the basis for quinolone antibiotics. It acts bacteriostatically (that is, it inhibits growth and reproduction) or bactericidally (it kills them) on both Gram positive and Gram negative bacteria, depending on the concentration. It is especially used in treating urinary tract infections, caused for example by Escherichia coli, Proteus, Enterobacter and Klebsiella.
Procoagulant Drugs:
Desmospressin Acetate
• Is a synthetic analogue of the pituitary antidiuretic hormone (ADH).
• Stimulates the activity of Coagulation Factor VIII
• Use for treatment of hemophilia A with factor VIII levels less than or equal to 5%, treatment of hemophilia B or in clients who have factor VIII antibodies. Treatment of severe classic von Willebrand's disease (type I) and when an abnormal molecular form of factor VIII antigen is present. Use for type IIB von Willebrand's disease.
Pharmacodynamics
Pharmacodynamics is the study of what drugs do to the body and how they do it.
Dose-Response Relationships
- Basic Features of the Dose-Response Relationship: The dose-response relationship is graded instead of all-or-nothing (as dose increases, response becomes progressively larger).
- Maximal Efficacy and Relative Potency
- Maximal Efficacy: the largest effects that a drug can produce
- Relative Potency: Potency refers to the amount of drug that must be given to elicit an effect.
- Potency is rarely an important characteristic of a drug.
- Potency of a drug implies nothing about its maximal efficacy.
Valdecoxib
used in the treatment of osteoarthritis, acute pain conditions, and dysmenorrhoea
Etoricoxib new COX-2 selective inhibitor
Mixed Narcotic Agonists/Antagonists
These drugs all produce analgesia, but have a lower potential for abuse and do not produce as much respiratory depression.
A. Pentazocine
- Has a combination of opiate analgesic and antagonist activity.
- Orally, it has about the same analgesic potency as codeine.
- In contrast to morphine, cardiac workload tends to increase due to an increase in pulmonary arterial and cerebrovascular pressure. Blood pressure and heart rate both also tend to increase.
- Adverse reactions to Pentazocine
• Nausea, vomiting, dizziness.
• Psychotomimetic effects, such as dysphoria, nightmares and visual hallucinations.
• Constipation is less marked than with morphine.
B. Nalbuphine
- Has both analgesic and antagonist properties.
- Resembles pentazocine pharmacologically.
- Analgesic potency approximately the same as morphine.
- Appears to be less hypotensive than morphine.
- Respiratory depression similar to morphine, but appears to peak-out at higher doses and to reach a ceiling.
- Like morphine, nalbuphine reduces myocardial oxygen demand. May be of value following acute myocardial infarction due to both its analgesic properties and reduced myocardial oxygen demand.
- Most frequent side effect is sedation.
C. Butorphanol
- Has both opiate agonist and antagonist properties.Resembles pentazocine , pharmacologically., 3.5 to 7 times more potent than morphine., Produces respiratory depression, but this effect peaks out with higher doses. The respiratory depression that does occur lasts longer than that seen following morphine administration.
- Butorphanol, like pentazocine, increases pulmonary arterial pressure and possibly the workload on the heart.
- Adverse reactions include sedation, nausea and sweating.
D. Buprenorphine
- A derivative of eto`rphine. Has both agonist and antagonist activity. 20 to 30 times more potent than morphine.Duration of action only slightly longer than morphine, but respiratory depression and miosis persist well after analgesia has disappeared.
- Respiratory depression reaches a ceiling at relatively low doses.
- Approximately 96% of the circulating drug is bound to plasma proteins.
- Side effects are similar to other opiates:
- sedation, nausea, vomiting,
- dizziness, sweating and headache.
Heparin:
- Inhibits blood coagulation by forming complexes with an α2-globulin (Antithrombin III) and each of the activated proteases of the coagulation cascade (Kallikrein, XIIa, XIa, IXa, Xa, and Thrombin). After formation of the heparin-ATIII-coagulation factor, heparin is released and becomes available again to bind to free ATIII.
- Blocks conversion of Prothrombin to Thrombin and thus inhibits the synthesis of Fibrin from Fibrinogen.
- Inhibits platelet function and increases vascular permeability. May induce moderate to severe thrombocytopenia.
- Is prescribed on a “unit” basis.
- Heparin is not effective after oral administration and is generally administered by intravenous or subcutaneous injection. Intramuscular injections should be avoided.
- Heparin does not cross the placenta and does not pass into the maternal milk.
- is contraindicated in any situation where active bleeding must be avoided.
Ulcerative lesions, intracranial hemorrhage, etc.
Overdosage:
• Simple withdrawal.
• Protamine sulfate: Highly basic peptide that binds heparin and thus neutralizes its effects.