Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Pharmacology

Metabolism

Hepatic Drug-Metabolizing Enzymes:  most drug metabolism in the liverperformed by the hepatic microsomal enzyme system.

Therapeutic Consequences of Drug Metabolism
- Accelerated Renal Drug Excretion:  The most important consequence of drug metabolism is the promotion of renal drug excretion.  Metabolism makes it possible for the kidney to excrete many drugs that it otherwise could not.

- Drug Inactivation
- Increased Therapeutic Action: Metabolism may increase the effectiveness of some drugs.
- Activation of Prodrugs:  A prodrug is a compound that is inactive when administered and made active by conversion in the body.

- Increased or Decreased Toxicity

Factors that influence rate of metabolism:  

- Age:  Hepatic maturation doesn't occur until about a year old.

- Induction of Drug-Metabolizing Enzymes:  Some drugs can cause the rate of metabolism to increase, leading to the need for an increased dosage.  May also influence the rate of metabolism for other drugs taken at the same time, leading to a need for increased dosages of those drugs as well.

- First-Pass Effect:  Hepatic inactivation of certain oral drugs.  Avoided by parentaral administration of drugs that undergo rapid hepatic metabolism.

- Nutritional Status

- Competition between Drugs

Histamine: 

Involved in inflammatory and anaphylactic reactions 
Local application causes swelling redness, and edema, mimicking a mild inflammatory reaction.

Large systemic doses leads to profound vascular changes similar to those seen after shock or anaphylactic origin.

Storage: widely distributed; in tissues, primarily in mast cells; in blood- in basophils, platelets; non-mast cell sites (epidermis, CNS, regenerating cells)

Histamine Stored in complex with:
Heparin
Chondroitin Sulfate
Eosinophilic Chemotactic Factor
Neutrophilic Chemotactic Factor
Proteases

Release: during type I (IgE-mediated) immediate hypersensitivity rxns, tissue injury, in response to some drugs
a.    Process: Fcε receptor on mast cell or basophil binds IgE, when Ag binds → ↑ PLC activity → histamine

Symptoms: bronchoconstriction, ↓ Pa, ↑ capillary permeability, edema

Action

H1 receptors are located mainly on smooth muscle cells in blood vessels and the respiratory and GI tracts. When histamine binds with these receptors producing the following effects.

-Contraction of smooth muscle in the bronchi and bronchioles producing bronchoconstraction.

-stimulation of vagus nerve endings to produce reflex bronchoconstraction and cough.

-Increased permeability of veins and capillaries, which allows fluid to flow into subcutaneous tissues and form edema (little lower blood pressure).

-Increased secretion of mucous glands. Mucosal edema and increased nasal mucus produce the nasal congestion characteristic of allergic rhinitis and the common cold.

-Stimulation of sensory peripheral nerve endings to cause pain and pruritus.

Histamine promotes vasodilation by causing vascular endothelium to release nitric oxide. This chemical signal diffuses to the vascular smooth muscle, where it stimulates cyclic guanosine monophosphate production, causing vasodilation.


H2-receptors present mostly in gastric glands and smooth muscle of some blood vessels. When receptors are stimulated, the main effects are increased secretion of gastric acid and pepsin, increased rate and force of myocardial contraction.

The H3-receptor functions as a negative-feedback mechanism to inhibit histamine synthesis and release in many body tissues. Stimulation of H3 receptors opposes the effects produced by stimulation of H1 receptors.

The H4- receptor is expressed in only a few cell types, and their role in drug action is unclear.

Drugs cause release of histamine: 

Many drugs can cause release of histamine in the body.
-Intracutaneouse morphine injection in humans produced localized redness, localized edema and a diffuse redness. This is due to release of histamine.

-I.V. inj of curare may cause bronchial constriction due to release of histamine.

-codeine , papaverine, meperidine (pethedine), atropine, hydralizine and sympathomimetic amines, histamine releases by these drugs may not be significant unless they are administered I.V in large doses

Pharmacological effects

-  If injected I.V. (0.1 mg of histamine) causes a sharp decline in the blood pressure, flushing of the face and headache. 
- There is also stimulation of gastric acid secretion. 
- If this injection is given to an asthmatic individual, there will be a marked decrease in vital capacity and a sever attack of asthma. 

Circulatory effects of histamine:

The two factors involved in the circulatory action of histamine are:
Arteriolar dilatation and
Capillary permeability
So it leads to loss of plasma from circulation

Effect on gastric secretion:
Histamine is a potent stimulant of gastric Hcl secretion. 

Amoxicillin

a moderate-spectrum

β-lactam antibiotic used to treat bacterial infections caused by susceptible

Mode of action Amoxicillin acts by inhibiting the synthesis of bacterial cell walls. It inhibits cross-linkage between the linear peptidoglycan polymer chains that make up a major component of the cell wall of Gram-positive bacteria. microorganisms. It is usually the drug of choice within the class because it is better absorbed, following oral administration, than other beta-lactam antibiotics. Amoxicillin is susceptible to degradation by  β-lactamase-producing bacteria, and so is often given clavulanic acid.

Microbiology Amoxicillin is a moderate-spectrum antibiotic active against a wide range of Gram-positive, and a limited range of Gram-negative organisms

Susceptible Gram-positive organisms : Streptococcus spp., Diplococcus pneumoniae, non β-lactamase-producing Staphylococcus spp., and Streptococcus faecalis.

Susceptible Gram-negative organisms  Haemophilus influenzae, Neisseria gonorrhoeae, Neisseria meningitidis, Escherichia coli, Proteus mirabilis and Salmonella spp.

Resistant organisms Penicillinase producing organisms, particularly penicillinase producing Staphylococcus spp. Penicillinase-producing N. gonorrhoeae and H. influenzae are also resistant

All strains of Pseudomonas spp., Klebsiella spp., Enterobacter spp., indole-positive

Proteus spp., Serratia marcescens, and Citrobacter spp. are resistant.

The incidence of β-lactamase-producing resistant organisms, including E. coli, appears to be increasing.

Amoxicillin and Clavulanic acid Amoxicillin is sometimes combined with clavulanic acid, a β-lactamase inhibitor, to increase the spectrum of action against

Gram-negative organisms, and to overcome bacterial antibiotic resistance mediated through β-lactamase production.

Methicillin

Methicillin is an antibiotic related to penicillin and other beta-lactam containing antibiotics. It is often used to treat infections caused by bacteria carrying an antibiotic resistance, e.g., staphylococci. As methicillin is deactivated by gastric acid, it has to be administered by injection.

Uses Methicillin serves a purpose in the laboratory to determine antibiotic sensitivity in microbiological culture.

Dissociation constants

Local anesthetic

pKa

% of base(RN) at pH 7.4

onset of action(min)

Lidocaine

7.8

29

2-4

Bupivacaine

8.1

17

5-8

Mepivacaine

7.7

33

2-4

Prilocaine

7.9

25

2-4

Articaine

7.8

29

2-4

Procaine

9.1

2

14-18

Benzocaine

3.5

100

-

Roxithromycin

It is used to treat respiratory tract, urinary and soft tissue infections. Roxithromycin is derived from erythromycin, containing the same 14-membered lactone ring. However, an N-oxime side chain is attached to the lactone ring.

Roxithromycin has similar antimicrobial spectrum as erythromycin, but is more effective against certain gram-negative bacteria, particularly Legionella pneumophilae.

When taken before a meal, roxithromycin is very rapidly absorbed, and diffused into most tissues and Phagocytes Only a small portion of roxithromycin is metabolised. Most of roxithromycin is secreted unchanged into the bile and some in expired air

 Sympathomimetics

Beta-Adrenergic Agonists

Beta1-adrenergic agonists (dopamine, dobutamine, prenalterol, xamoterol) have been used to treat acute and chronic heart failure, but have limited usefulness in chronic CHF because of their arrhythmogenic effects, short duration of action, the development of tolerance, and necessity of parenteral administration

Dopamine (i.v.) is used in acute heart failure (cardiogenic shock) to increase blood pressure and increase cardiac output

  • It has a short half-life (1 min)
  • At high doses dopamine has potent peripheral vasoconstrictor effects (alpha-receptor stimulation), in addition to its inotropic effects
  • Low dose dopamine has a renal artery dilating effect and may improve sodium and water excretion in patients refractory to loop diuretics
  • When systolic pressure is greater than 90 mm Hg, nitroprusside can be added to reduce ventricular filling pressure and reduce afterload
  • i.v. furosemide should also be administered to reduce edema

Levodopa and ibopamine, analogs of dopamine that can be administered orally, have been shown to improve symptoms in some patients, but can exhibit arrhythmogenic side-effects and tachyphylaxis

Dobutamine is a somewhat selective beta1-adrenergic agonist that lacks vasoconstrictor activity and causes minimal changes in heart rate

  • It is frequently added to nitroprusside when blood pressure is adequate to increase cardiac output
  • It is administered as an i.v. infusion to treat acute severe heart failure
  • It has a short half-life (2.4 min) and is only used on a short-term basis, although long-term beneficial effects on cardiac function have been noted
  • After 72 hours of therapy, tolerance can develop to dobutamine necessitating switch to other inotropic support (e.g. milrinone)
  • Dobutamine can enhance AV conduction and worsen atrial tachycardia

Prenalterol and xamoterol are partial beta1-adrenergic agonists that may simultaneously stimulate beta1-receptors and block the receptors from stimulation by endogenous catecholamines, thereby protecting against beta1-receptor down-regulation

Explore by Exams