NEET MDS Lessons
Pharmacology
Heroin (diacetyl morphine)
Heroin is synthetically derived from the natural opioid alkaloid morphine
Largely owing to its very rapid onset of action and very short half-life, heroin is a popular drug of abuse
It is most effective when used intravenously
Heroin is rapidly deacetylated to 6-monoacetyl morphine and morphine, both of which are active at the mu opioid receptor
More lipid soluble than morphine and about 2½ times more potent. It enters the CNS more readily.
On the basis of Receptors, drugs can be divided into four groups,
a. agonists
b. antagonists
c. agonist-antagonists
d. partial agonists
a. Agonist
morphine fentanyl pethidine
Action : activation of all receptor subclasses, though, with different affinities
b. Antagonist
Naloxone , Naltrexone
Action : Devoid of activity at all receptor classes
c. Partial Agonist: (Mixed Narcotic Agonists/Antagonists)
Pentazocine, Nalbuphine, Butorphanol , Buprenorphine
Action: activity at one or more, but not all receptor types
With regard to partial agonists, receptor theory states that drugs have two independent properties at receptor sites,
a. affinity
The ability, or avidity to bind to the receptor
Proportional to the association rate constant, Ka
b. efficacy
or, intrinsic activity, and is the ability of the D-R complex to initiate a pharmacological effect
Drugs that produce a less than maximal response and, therefore, have a low intrinsic activity are called partial agonists.
These drugs display certain pharmacological features,
a. the slope of the dose-response curve is less than that of a full agonist
b. the dose response curve exhibits a ceiling with the maximal response below that obtainable by a full agonist
c. partial agonists are able to antagonise the effects of large doses of full agonists
PHARMACOLOGY OF LOCAL ANESTHETICS
Characteristics
1. Block axon conduction (nerve impulse) when applied locally in appropriate concentrations.
2. Local anesthetic action must be completely reversible; however, the duration of the anesthetic block should be of sufficient length to allow completion of the planned treatment.
3. Produce minimal local toxic effects such as nerve and muscle damage as well as minimal systemic toxic effects of organ systems such as the cardiovascular and central nervous system.
Meperidine (Demerol)
Meperidine is a phenylpiperidine and has a number of congeners. It is mostly effective in the CNS and bowel
- Produces analgesia, sedation, euphoria and respiratory depression.
- Less potent than morphine, 80-100 mg meperidine equals 10 mg morphine.
- Shorter duration of action than morphine (2-4 hrs).
- Meperidine has greater excitatory activity than does morphine and toxicity may lead to convulsions.
- Meperidine appears to have some atropine-like activity.
- Does not constrict the pupils to the same extent as morphine.
- Does not cause as much constipation as morphine.
- Spasmogenic effect on GI and biliary tract smooth muscle is less pronounced than that produced by morphine.
- Not an effective antitussive agent.
- In contrast to morphine, meperidine increases the force of oxytocin-induced contractions of the uterus.
- Often the drug of choice during delivery due to its lack of inhibitory effect on uterine contractions and its relatively short duration of action.
- It has serotonergic activity when combined with monoamine oxidase inhibitors, which can produce serotonin toxicity (clonus, hyperreflexia, hyperthermia, and agitation)
Erythromycin
used for people who have an allergy to penicillins. For respiratory tract infections, it has better coverage of atypical organisms, including mycoplasma. It is also used to treat outbreaks of chlamydia, syphilis, and gonorrhea.
Erythromycin is produced from a strain of the actinomyces Saccaropolyspora erythraea, formerly known as Streptomyces erythraeus.
Mechanism of action Erythromycin prevents bacteria from growing, by interfering with their protein synthesis. Erythromycin binds to the subunit 50S of the bacterial ribosome, and thus inhibits the translocation of peptides.
Erythromycin is easily inactivated by gastric acids, therefore all orally administered formulations are given as either enteric coated or as more stable salts or esters. Erythromycin is very rapidly absorbed, and diffused into most tissues and phagocytes. Due to the high concentration in phagocytes, erythromycin is actively transported to the site of infection, where during active phagocytosis, large concentrations of erythromycin are released.
Most of erythromycin is metabolised by demethylation in the liver. Its main route elimination route is in the bile, and a small portion in the urine.
Erythromycin's half-life is 1.5 hours.
Side-effects. More serious side-effects, such as reversible deafness are rare. Cholestatic jaundice, Stevens-Johnson syndrome and toxic epidermal necrosis are some other rare side effects that may occur.
Contraindications Earlier case reports on sudden death prompted a study on a large cohort that confirmed a link between erythromycin, ventricular tachycardia and sudden cardiac death in patients also taking drugs that prolong the metabolism of erythromycin (like verapamil or diltiazem)
erythromycin should not be administered in patients using these drugs, or drugs that also prolong the QT time.
Methods of general anesthesia
CIRCLE SYSTEM
*HIGH-FLOW
FRESH GAS FLOW > 3 l/min.
*LOW-FLOW
FGF ok. 1l/min.
*MINIMAL-FLOW
FGF ok. 0,5 l/min.
Lithium carbonate: 1st choice (controls mania in bipolar disorders); delay before onset of therapeutic benefit; no psychotropic effects in normal humans
i. Mechanism: blocks enzymes in inositol phosphate signaling pathway; no consistent effects of lithium on NE, 5-HT, and DA
ii. Side effects: severe CNS (ataxia, delirium, coma, convulsions) and CV (cardiac dysrhythmias)