Talk to us?

Pharmacology - NEETMDS- courses
NEET MDS Lessons
Pharmacology

Azithromycin

Azithromycin is the first macrolide antibiotic belonging to the azalide group. Azithromycin is derived from erythromycin by adding a nitrogen atom into the lactone ring of erythromycin A, thus making lactone ring 15-membered.

Azithromycin has similar antimicrobial spectrum as erythromycin, but is more effective against certain gram-negative bacteria, particularly Hemophilus influenzae.

azithromycin is acid-stable and can therefore be taken orally without being protected from gastric acids.

Main elimination route is through excretion in to the biliary fluid, and some can also be eliminated through urinary excretion

DIURETICS

Specific Therapeutic Objective

Clinical State(s)

Drug(s) (Class)

Draw fluid from tissue to vascular space reduce tissue edema

Cerebral edema
glaucoma

Mannitol (Osmotic)
Glucose (Osmotic)
Glycerin (Osmotic)

Decrease renal swelling
expand tubular volume

Renal shutdown

Glucose (Osmotic)
Mannitol (Osmotic)

Modest and/or sustained decrease in venous hydrostatic pressure

Congestive heart failure
Hepatic cirrhosis
Udder edema

Hydrochlorothiazide (thiazide)
Chlorothiazide (thiazide)

Aggressive and/or short-term decrease in venous hydrostatic pressure

Congestive heart failure
Hepatic cirrhosis
Udder edema

Furosemide (loop)

Inhibit aldosterone action

Hepatic cirrhosis
Congestive heart failure

triamterene (K+ sparing)
spironolactone (K+ sparing - competitive)

Reduce potassium wasting 2o to other diuretic

Hepatic cirrhosis
Congestive heart failure

triamterene (K+ sparing)
spironolactone (K+ sparing - competitive)

Inhibit ADH action

Inappropriate ADH secretion

lithium (aquaretic)
demeclocycline (aquaretic

Increase calcium secretion

Malignant hypercalcemia

  • Paraneoplastic
  • Hypervitaminosis D

Furosemide (loop)

Reduce urine output

Diabetes insidpidus

Hydrochlorothiazide (thiazide)
Chlorothiazide (thiazide)

Urine alkalinization

Various

Carbonic anhydrase inhibitors

Loop (High Ceiling) Diuretics

Loop diuretics are diuretics that act at the ascending limb of the loop of Henle in the kidney. They are primarily used in medicine to treat hypertension and edema often due to congestive heart failure or renal insufficiency. While thiazide diuretics are more effective in patients with normal kidney function, loop diuretics are more effective in patients with impaired kidney function.

Agent: Furosemide

Mechanism(s) of Action

1.    Diuretic effect is produced by inhibit of active 1 Na+, 1 K+, 2 Cl-  co-transport (ascending limb - Loop of Henle). 
o    This produces potent diuresis as this is a relatively important Na re-absorption site.

2.    Potassium wasting effect 

a.    Blood volume reduction leads to increased production of aldosterone 
b.    Increased distal Na load secondary to diuretic effect 
c.    a + b = increase Na (to blood) for K (to urine) exchange which produces indirect K wasting (same as thiazides but more likely)

3.    Increased calcium clearance/decreased plasma calcium 

o    secondary to passive decreases in loop Ca++ reabsorption.
o    This is linked to inhibition of Cl- reabsorption.
o    This is an important clinical effect in patients with ABNORMAL High Ca++
 

Paracetamol

Paracetamol or acetaminophen is analgesic and antipyretic drug that is used for the relief of fever, headaches, and other minor aches and pains.

paracetamol acts by reducing production of prostaglandins, which are involved in the pain and fever processes, by inhibiting the cyclooxygenase (COX)  enzyme.

Metabolism Paracetamol is metabolized primarily in the liver. At usual doses, it is quickly detoxified by combining irreversibly with the sulfhydryl group of glutathione to produce a non-toxic conjugate that is eventually excreted by the kidneys.

Gabapentin (Neurontin): newer; for generalized tonic-clonic seizures and partial seizures (partial and complex)

Mechanism: unknown but know doesn’t mimic GABA inhibition or block Ca currents

Side effects: dizziness, ataxia, fatigue; drug well-tolerated and no significant drug interactions

Aminoglycoside

Aminoglycosides are a group of antibiotics that are effective against certain types of bacteria. They include amikacin, gentamicin, kanamycin, neomycin, netilmicin, paromomycin, streptomycin, and tobramycin. Those which are derived from Streptomyces species

Aminoglycosides work by binding to the bacterial 30S ribosomal subunit, causing misreading of t-RNA, leaving the bacterium unable to synthesize proteins vital to its growth.

Aminoglycosides are useful primarily in infections involving aerobic, Gram-negative bacteria, such as Pseudomonas, Acinetobacter, and Enterobacter. In addition, some mycobacteria, including the bacteria that cause tuberculosis, are susceptible to aminoglycosides. Streptomycin was the first effective drug in the treatment of tuberculosis, though the role of aminoglycosides such as streptomycin and amikacin have been eclipsed (because of their toxicity and inconvenient route of administration) except for multiple drug resistant strains.

Infections caused by Gram-positive bacteria can also be treated with aminoglycosides, but other types of antibiotics are more potent and less damaging to the host. In the past the aminoglycosides have been used in conjunction with penicillin-related antibiotics in streptococcal infections for their synergistic effects, particularly in endocarditis.

Because of their potential for ototoxicity and renal toxicity, aminoglycosides are administered in doses based on body weight. Blood drug levels and creatinine are monitored during the course of therapy.

There is no oral form of these antibiotics: they are generally administered intravenously, though some are used in topical preparations used on wounds.

Aminoglycosides are mostly ineffective against anaerobic bacteria, fungi and viruses.

Classification Based on

a. Chemical structure

I. Sulphonamidcs.and others - c.g.. sulphadiazine. etc.

2. Beta-lactum ring - e.g.. penicillin

3. Tetracycline - e.g.. Oxytetracycline,.doxycycline.etc.

b. Mechanism of action

1. Inhibits cell-wall synthesis - penicillin. cephalosporin..cycloserine. etc.

2. Cause leakage from cell-membrane – polypeptides (polymyxin,  Bacitracin), polyenes (Nystatin)

3. Inhibit protein synthesis - tetracyclines. chloramphenicols. erythromycin.

4. Cause mis-reading of mRNA code - aminoglycosides

5. Interfere with DNA function - refampicin.. metronidazole

6. Interfere with intermediary metabolism - sulphonamides. ethambutole

c. Type of organism against which it is primarily activate

I. Antibacterial - penicillin.

2. Antifungal - nystatin.

 

d. Spectrum of activity

1. Broad spectrum - tetracylines .

2. Narrow spectrum - penicillin G (penG). streptomycin.erythromycin

e. Type of action

I. Bacteriostatic - sulphonamides, erythromycin.tertracyclines

2. Bacteriocidal - penicillin. aminoglycoside

f. Source

I. Fungi - penicillin. cephalosporins

2. Bacteria - Polymyxin B

Explore by Exams