NEET MDS Lessons
Pharmacology
Gentamicin
Gentamicin is a aminoglycoside antibiotic, and can treat many different types of bacterial infections, particularly Gram-negative infection.
Gentamicin works by binding to a site on the bacterial ribosome, causing the genetic code to be misread.
Like all aminoglycosides, gentamicin does not pass the gastro-intestinal tract, so it can only be given intravenously or intramuscularly.
Gentamicin can cause deafness or a loss of equilibrioception in genetically susceptible individuals. These individuals have a normally harmless mutation in their DNA, that allows the gentamicin to affect their cells. The cells of the ear are particularly sensitive to this.
Gentamicin can also be highly nephrotoxic, particularly if multiple doses accumulate over a course of treatment. For this reason gentamicin is usually dosed by body weight. Various formulae exist for calculating gentamicin dosage. Also serum levels of gentamicin are monitored during treatment.
E. Coli has shown some resistance to Gentamicin, despite being gram-negative
Clotrimazole: Clotrimazole is a potent, specific inhibitor of p450 enzymes.
It is used in some antifungal medications, and in the treatment of yeast infections.
Paracetamol
Paracetamol or acetaminophen is analgesic and antipyretic drug that is used for the relief of fever, headaches, and other minor aches and pains.
paracetamol acts by reducing production of prostaglandins, which are involved in the pain and fever processes, by inhibiting the cyclooxygenase (COX) enzyme.
Metabolism Paracetamol is metabolized primarily in the liver. At usual doses, it is quickly detoxified by combining irreversibly with the sulfhydryl group of glutathione to produce a non-toxic conjugate that is eventually excreted by the kidneys.
Methadone
Pharmacology and analgesic potency similar to morphine.
- Very effective following oral administration.
- Longer duration of action than morphine due to plasma protein binding (t1/2 approximately 25 hrs).
- Used in methadone maintenance programs for drug addicts and for opiate withdrawal. Opiate withdrawal is more prolonged but is less intense than it is following morphine or heroin.
DIURETICS
The basis for the use of diuretics is to promote sodium depletion (and thereby water) which leads to a decrease in extracellular fluid volume.
An important aspect of diuretic therapy is to prevent the development of tolerance to other antihypertensive drugs.
TYPES OF DIURETICS
A. Thiazide Diuretics examples include chlorothiazide
hydrochlorothiazide
a concern with these drugs is the loss of potassium as well as sodium
B. Loop Diuretics (High Ceiling Diuretics) examples include
furosemide (Lasix)
bumetanide
these compounds produce a powerful diuresis and are capable of producing severe derangements of electrolyte balance
C. Potassium Sparing Diuretics examples include
triamterene
amiloride
spironolactone
unlike the other diuretics, these agents do not cause loss of potassium
Mechanism of Action
Initial effects: through reduction of plasma volume and cardiac output.
Long term effect: through decrease in total peripheral vascular resistance.
Advantages
Documented reduction in cardiovascular morbidity and mortality.
Least expensive antihypertensive drugs.
Best drug for treatment of systolic hypertension and for hypertension in theelderly.
Can be combined with all other antihypertensive drugs to produce synergetic effect.
Side Effects
Metabolic effects (uncommon with small doses): hypokalemia,hypomagnesemia, hyponatremia, hyperuricemia, dyslipidemia (increased total
and LDL cholesterol), impaired glucose tolerance, and hypercalcemia (with thiazides).
Postural hypotension.
Impotence in up to 22% of patients.
Considerations
- Moderate salt restriction is the key for effective antihypertensive effect of diuretics and for protection from diuretic - induced hypokalaemia.
- Thiazides are not effective in patients with renal failure (serum creatinine > 2mg /dl) because of reduced glomerular filtration rate.
- Frusemide needs frequent doses ( 2-3 /day ).Thiazides can be given once daily or every other day.
- Potassium supplements should not be routinely combined with thiazide or loop diuretics. They are indicated with hypokalemia (serum potassium < 3.5 mEq/L) especially with concomitant digitalis therapy or left ventricular hypertrophy.
- Nonsteroidal antiinflammatory drugs can antagonize diuretics effectiveness.
Special Indications
Diuretics should be the primary choice in all hypertensives.
They are indicated in:
- Volume dependent forms of hypertension: blacks, elderly, diabetic, renal and obese hypertensives.
- Hypertension complicated with heart failure.
- Resistant hypertension: loop diuretics in large doses are recommended.
- Renal impairment: loop diuretics
Cells of the Nervous System
1-Neurons (Nerve Cells):function units of the nervous system by conducting nerve impulses, highly specialized and amitotic. Each has a cell body (soma), one or more dendrites, and a single axon.
• Cell Body: it has a nucleus with at least one nucleolus and many of the typical cytoplasmic organelles, but lacks centriolesfor cell division.
• Dendrites:Dendrites and axons are cytoplasmic extensions (or processes), that project from the cell body. They are sometimes referred to as fibers. Dendrites (afferent processes) increase their surface area to receive signals from other neurons, and transmit impulses to the neuron cell body.
• Axon: There is only one axon (efferent process) that projects from each cell body.
It carries impulses away from the cell body.
2-Glial cells: do not conduct nerve impulses, but support, nourish, and protect the neurons. They are mitotic, and far more numerous than neurons.
Astrocyte: A glialcell that provides support for neurons of the CNS, provides nutrients regulates the chemical composition of the extracellularfluid.
• Oligodendrocyte: A type of glialcell in the CNS that forms myelin sheaths.
• Microglia:The smallest glialcells; act as phagocytes (cleaning up debris) and protect the brain from invading microorganisms.
• Schwann cell:A cell in the PNS that is wrapped around a myelinatedaxon, providing one segment of its myelin sheath.
Patient positioning
The most common medical emergency encountered in the dental office setting is syncope. So patients in the supine or semi-supine position to improve venous return and cerebral blood flow provided that the position is tolerated by the patient and is appropriate for their medical condition.