NEET MDS Lessons
Pharmacology
Celecoxib
is a highly selective COX-2 inhibitor and primarily inhibits this isoform of cyclooxygenase, whereas traditional NSAIDs inhibit both COX-1 and COX-2. Celecoxib is approximately 10-20 times more selective for COX-2 inhibition over COX-1.
Being a sulphonamide can cause skin rash & hypersensitivity rxn., occasional oedema& HT.
Indication
Osteoarthritis ( 100‐200mg BID ) , rheumatoid arthritis, dysmenorrhea, acute gouty attacks, acute musculoskeletal pain.
Aquaretics
An aquaretic is a class of drug that is used to promote aquaresis, the excretion of water without electrolyte loss.
Lithium, demeclocycline
Mechanism of Action
1. Block ADH action on distal tubule and collecting duct. Blocking ADH decreases H2O permeability. H2O is not recovered (distal tubule) using osmotic draw of counter-current multiplier so aquaretics reduce water reabsorption (tubule to blood stream).
2. Net effect is an increase in free water clearance
Class I Sodium Channel Blockers
• Block movement of sodium into cells of the cardiac conducting system
• Results in a stabilizing effect and decreased formation and conduction of electrical impulses
• Have a local anesthetic effect
• Are declining in use due to proarrhythmic effects and increased mortality rates
• Na channel blockers - Class 1 drugs are divided into 3 subgroups
• 1A. 1B, 1C based on subtle differences in their mechanism of action.
• Blockade of these channels will prevent depolarization.
• Spread of action potential across myocardium will slow and areas of pacemaker activity is suppressed.
Class IA Sodium Channel Blockers
• Treatment of: symptomatic premature ventricular contractions, supraventricular tachycardia, and ventricular tachycardia, prevention of ventricular fibrillation
– Quinidine (Cardioquin, Quinaglute)
– Procainamide (Pronestyl, Procanbid)
– Disopyramide (Norpace)
• Quinidine – prototype
• Low therapeutic index
• High incidence of adverse effects
Class IB Sodium Channel Blockers
• Treatment of: symptomatic premature ventricular contractions and ventricular tachycardia, prevention of ventricular fibrillation
– Lidocaine (Xylocaine)
– Mexiletine (Mexitil)
– Tocainide (Tonocard)
– Phenytoin (Dilantin)
Side Effects: Lidocaine
• Drowsiness • Paresthesias • Muscle twitching • Convulsions • Changes in mental status (disorientation, confusion) • Hypersensitivity reactions (edema, uticaria, anaphylaxis)
Side Effects: Phenytoin (Dilantin)
• Gingival hyperplasia
• Nystagmus
• Ataxia, slurring of speech
• Tremors
• Drowsiness
• Confusion
• Lidocaine – prototype
• Must be given by injection
• Used as a local anesthetic
• Drug of choice for treating serious ventricular arrhythmias associated with acute myocardial infarction, cardiac surgery, cardiac catheterization and electrical conversion
Class IC Sodium Channel Blockers
• Treatment of: life-threatening ventricular tachycardia or fibrillation and supraventricular tachycardia unresponsive to other drugs
– Flecainide
– Propafenone
Adverse Effects
• CNS - dizziness, drowsiness, fatigue, twitching, mouth numbness, slurred speech vision changes, and tremors that can progress to convulsions.
• GI - changes in taste, nausea, and vomiting. CV - arrhythmias including heart blocks, hypotension, vasodilation, and potential for cardiac arrest.
• Other Rash, hypersensitivity reactions loss of hair and potential bone marrow depression.
Drug-Drug Interactions
• Increased risk for arrhythmias if combined with other drugs that are know to cause arrhythmias- digoxin and beta blockers
• Increased risk of bleeding if combined with oral anticoagulants.
Drug Food Interactions
• Quinidine needs an acidic urine for excretion. Increased levels lead to toxicity
• Avoid foods that alkalinize the urine- citrus juices, vegetables, antacid, milk products
EPHEDRINE
It act indirectly and directly on α and β receptors. It increases blood pressure both by peripheral vasoconstriction and by increasing the cardiac output. Ephedrine also relaxes the bronchial smooth muscles.
Ephedrine stimulates CNS and produces restlessness, insomnia, anxiety and tremors.
Ephedrine produces mydriasis on local as well as systemic administration.
Ephedrine is useful for the treatment of chronic and moderate type of bronchial asthma, used as nasal decongestant and as a mydriatic without cycloplegia. It is also useful in preventing ventricular asystole in Stokes Adams syndrome.
Local Anesthetics
1. Procaine (Novocaine)
a) Classic Ester type agent, first synthetic injectable local anesthetic.
b) Slow onset and short duration of action
2. Tetracaine (Pontocaine)
a) Ester type agent--ten times as potent and toxic as procaine.
b) Slow onset but long duration of action.
c) Available in injectable and topical applications.
3. Propoxycaine (Ravocaine)
a) Ester type agent–five times as potent and toxic as procaine.
b) Often combined with procaine to increase duration of action.
4. Lidocaine (Xylocaine)
a) Versatile widely used amide type agent.
b) Two - three times as potent and toxic as procaine.
c) Rapid onset and relatively long duration of action.
d) Good agent for topical application.
5. Mepivacaine (Carbocaine)
a) Amide type agent similar to lidocaine.
b) Without vasoconstrictor has only short duration of action.
6. Prilocaine (Citanest)
a) Amide type agent — less potent than lidocaine.
b) Without vasoconstrictor has only short duration of action.
c) Metabolized to o-toluidine which can cause methemoglobinemia — significant only with large doses of prilocaine.
d) Higher incidences of paresthesia reported with 4 % preparation
7. Bupivacaine (Marcaine)
a) Amide type agent of high potency and toxicity.
b) Rapid onset and very long duration of action even without vasoconstrictor.
8. Articaine (Septocaine)
a) Amide type agent
b) Only amide-type local anesthetic that contains an ester group, therefore metabolized both in the liver and plasma.
c) Approved by the FDA in 2000
d) Evidence points to improved diffusion through hard and soft tissues as compared to other local anesthetics.
e) Reports of a higher incidence of paresthesia, presumably due to the 4% concentration
f) Not recommended for use in children under 4 years of age
Phenoxymethylpenicillin (penicillin V) Phenoxymethylpenicillin, commonly known as penicillin V, is the orally-active form of penicillin. It is less active than benzylpenicillin
Indications:
infections caused by Streptococcus pyogenes, tonsillitis, pharyngitis, skin infections, prophylaxis of rheumatic fever, moderate-to-severe gingivitis (with metronidazole)
Neurolept Anesthesia
An antipsychotic agent such as droperidol plus an opiate analgesic agent such as fentanyl or sufentanil. This latter agent is approximately eight to ten times more potent than fentanyl.