Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Pharmacology

Neuron Basic Structure (How brain cells communicate)

• Synapse:A junction between the terminal button of an axon and the membrane of another neuron
• Terminal button(orbouton):The bud at the end of a branch of an axon; forms synapses with another neuron; sends information to that neuron.
• Neurotransmitter:A chemical that is released by a terminal button; has an excitatory or inhibitory effect on another neuron.

Different types of Synapses
1-Axo-denrdritic 
2-Axo-axonal 
3-Axo-somatic

Chemical transmission in the CNS 


The CNS controls the main functions of the body through the action endogenous chemical substances known as “neurotransmitters”.
These neurotransmitters are stored in and secreted by neurons to “transmit”information to the postsynaptic sites producing either excitatoryor inhibitory responses.
Most centrally acting drugs exert their actions at the synaptic junctions by either affecting neurotransmitter synthesis, release, uptake, or by exerting direct agonistor antagonistaction on postsynaptic sites.

Streptomycin

Streptomycin was the first of a class of drugs called aminoglycosides to be discovered, and was the first antibiotic remedy for tuberculosis. It is derived from the actinobacterium Streptomyces griseus.

Streptomycin cannot be given orally, but must be administered by regular intramuscular injection.

Diclofenac

Short half life (1‐2 hrs), high 1stpass metab.,  accumulates in synovial fluid after oral admn., reduce inflammation, such as in arthritis or acute injury

Mechanism of action

inhibition of prostaglandin synthesis by inhibition of cyclooxygenase (COX). There is some evidence that diclofenac inhibits the lipooxygenase pathways, thus reducing formation of the

leukotrienes (also pro-inflammatory autacoids). There is also speculation that diclofenac may inhibit phospholipase A2 as part of its mechanism of action. These additional actions may explain the high potency of diclofenac - it is the most potent NSAID on a molar basis.

Inhibition of COX also decreases prostaglandins in the epithelium of the stomach, making it more sensitive to corrosion by gastric acid. This is also the main side effect of diclofenac and other drugs that are not selective for the COX2-isoenzyme.

Thrombolytic Agents:

Tissue Plasminogen Activator (t-PA, Activase)

t-PA is a serine protease. It is a poor plasminogen activator in the absence of fibrin. t-PA binds to fibrin and activates bound plasminogen several hundred-fold more rapidly than it activates plasminogen in the circulation.

Streptokinase (Streptase)

Streptokinase is a protein produced by β-hemolytic streptococci. It has no intrinsic enzymatic activity, but forms a stable noncovalent 1:1 complex with plasminogen. This produces a conformational change that exposes the active site on plasminogen that cleaves a peptide bond on free plasminogen molecules to form free plasmin.

Urokinase (Abbokinase)

Urokinase is isolated from cultured human cells.Like streptokinase, it lacks fibrin specificity and therefore readily induces a systemic lytic state. Like t-PA, Urokinase is very expensive.

Contraindications to Thrombolytic Therapy:

• Surgery within 10 days, including organ biopsy, puncture of noncompressible vessels, serious trauma, cardiopulmonary resuscitation.

• Serious gastrointestinal bleeding within 3 months.

• History of hypertension (diastolic pressure >110 mm Hg).

• Active bleeding or hemorrhagic disorder.

• Previous cerebrovascular accident or active intracranial bleeding.

Aminocaproic acid:

Aminocaproic acid prevents the binding or plasminogen and plasmin to fibrin. It is a potent inhibitor for fibrinolysis and can reverse states that are associated with excessive fibrinolysis.

Immunosuppressive drugs are essential in managing various medical conditions, particularly in preventing organ transplant rejection and treating autoimmune diseases. They can be classified into five main groups:

  1. Glucocorticoids: These are steroid hormones that reduce inflammation and suppress the immune response. They work by inhibiting the production of inflammatory cytokines and reducing the proliferation of immune cells. Common glucocorticoids include prednisone and dexamethasone. Their effects include:

    • Mechanism of Action: Glucocorticoids inhibit the expression of genes coding for pro-inflammatory cytokines (e.g., IL-1, IL-2, TNF-α).

    • Clinical Uses: They are used in conditions like rheumatoid arthritis, lupus, and to prevent transplant rejection.

    • Side Effects: Long-term use can lead to osteoporosis, weight gain, diabetes, and increased risk of infections.

  2. Cytostatic Drugs: These agents inhibit cell division and are often used in cancer treatment as well as in autoimmune diseases. They include:

    • Examples: Cyclophosphamide, azathioprine, and methotrexate.

    • Mechanism of Action: They interfere with DNA synthesis and cell proliferation, particularly affecting rapidly dividing cells.

    • Clinical Uses: Effective in treating cancers, systemic lupus erythematosus, and other autoimmune disorders.

    • Side Effects: Can cause bone marrow suppression, leading to increased risk of infections and anemia.

  3. Antibodies: This group includes monoclonal and polyclonal antibodies that target specific components of the immune system.

    • Types:

      • Monoclonal Antibodies: Such as basiliximab and daclizumab, which target the IL-2 receptor to prevent T-cell activation.
      • Polyclonal Antibodies: These are derived from multiple B-cell clones and can broadly suppress immune responses.
    • Clinical Uses: Used in organ transplantation and to treat autoimmune diseases.

    • Side Effects: Risk of infections and allergic reactions due to immune suppression.

  4. Drugs Acting on Immunophilins: These drugs modulate immune responses by binding to immunophilins, which are proteins that assist in the folding of other proteins.

    • Examples: Cyclosporine and tacrolimus.

    • Mechanism of Action: They inhibit calcineurin, a phosphatase involved in T-cell activation, thereby reducing the production of IL-2.

    • Clinical Uses: Primarily used in organ transplantation to prevent rejection.

    • Side Effects: Nephrotoxicity, hypertension, and increased risk of infections.

  5. Other Drugs: This category includes various agents that do not fit neatly into the other classifications but still have immunosuppressive effects.

    • Examples: Mycophenolate mofetil and sirolimus.

    • Mechanism of Action: Mycophenolate inhibits lymphocyte proliferation by blocking purine synthesis, while sirolimus inhibits mTOR, affecting T-cell activation and proliferation.

    • Clinical Uses: Used in transplant patients and in some autoimmune diseases.

    • Side Effects: Gastrointestinal disturbances, increased risk of infections, and potential for malignancies.

Antiarrhythmic Drugs

Cardiac Arrhythmias 
Can originate in any part of the conduction system or from atrial or ventricular muscle.
Result from
– Disturbances in electrical impulse formation (automaticity) 
– Conduction (conductivity) 
– Both

MECHANISMS OF ARRHYTHMIA
ARRHYTHMIA – absence of rhythm
DYSRRHYTHMIA – abnormal rhythm

ARRHYTHMIAS result from:
1. Disturbance in Impulse Formation
2. Disturbance in Impulse Conduction
- Block results from severely depressed conduction
- Re-entry or circus movement / daughter impulse

Types of Arrhythmias

• Sinus arrhythmias 
– Usually significant only 
– if they are severe or  prolonged 

• Atrial arrhythmias 
– Most significant in the presence of underlying heart disease
– Serious: atrial fibrillation can lead to the formation of clots in the heart 

• Nodal arrhythmias 
– May involve tachycardia and increased workload of the heart or bradycardia from heart block 

• Ventricular arrhythmias 
– Include premature ventricular contractions (PVCs), ventricular tachycardia, and ventricular fibrillation 

Class

Action

Drugs

I

Sodium Channel Blockade

 

  IA

Prolong repolarization
lengthen AP duration
Intermediate interaction with Na+ channels

Quinidine, procainamide, disopyramide

  IB

Shorten repolarization
shorten AP duration
rapid interaction with Na+ channels

Lidocaine, mexiletine, tocainide, phenytoin

  IC

Little effect on repolarization
no effect or minimal ↑ AP duration
slow interaction with Na+ channels

Encainide, flecainide, propafenone

II

Beta-Adrenergic Blockade

Propanolol, esmolol, acebutolol, l-sotalol

III

Prolong Repolarization (Potassium Channel Blockade; Other)

Ibutilide, dofetilide, sotalol (d,l), amiodarone, bretylium

IV

Calcium Channel Blockade

Verapamil, diltiazem, bepridil

Miscellaneous

Miscellaneous Actions

Adenosine, digitalis, magnesium

 

Indications
• To convert atrial fibrillation (AF) or flutter to normal sinus rhythm (NSR) 
• To maintain NSR after conversion from AF or flutter 
• When the ventricular rate is so fast or irregular that cardiac output is impaired
– Decreased cardiac output leads to symptoms of decreased systemic, cerebral, and coronary circulation 
• When dangerous arrhythmias occur and may be fatal if not quickly terminated 
– For example: ventricular tachycardia may cause cardiac arrest 

Mechanism of Action 
• Reduce automaticity (spontaneous depolarization of myocardial cells, including ectopic pacemakers) 
• Slow conduction of electrical impulses through the heart
• Prolong the refractory period of myocardial cells (so they are less likely to be prematurely activated by adjacent cells 
 

Amphotericin B

Main use is in systemic fungal infections (e.g. in immunocompromised patients), and in visceral leishmaniasis. Aspergillosis, cryptococcus infections (e.g. meningitis) and candidiasis are treated with amphotericin B. It is also used empirically in febrile immunocompromised patients who do not respond to broad-spectrum antibiotics.

MOA:

As with other polyene antifungals, amphotericin B associates with ergosterol, a membrane chemical of fungi, forming a pore that leads to K+ leakage and fungal cell death

Side effects: nephrotoxicity (kidney damage) , headache, vomiting, convulsions and fever

The side-effects are much milder when amphotericin B is delivered in liposomes

Explore by Exams