NEET MDS Lessons
Pharmacology
Erythromycin
used for people who have an allergy to penicillins. For respiratory tract infections, it has better coverage of atypical organisms, including mycoplasma. It is also used to treat outbreaks of chlamydia, syphilis, and gonorrhea.
Erythromycin is produced from a strain of the actinomyces Saccaropolyspora erythraea, formerly known as Streptomyces erythraeus.
Mechanism of action Erythromycin prevents bacteria from growing, by interfering with their protein synthesis. Erythromycin binds to the subunit 50S of the bacterial ribosome, and thus inhibits the translocation of peptides.
Erythromycin is easily inactivated by gastric acids, therefore all orally administered formulations are given as either enteric coated or as more stable salts or esters. Erythromycin is very rapidly absorbed, and diffused into most tissues and phagocytes. Due to the high concentration in phagocytes, erythromycin is actively transported to the site of infection, where during active phagocytosis, large concentrations of erythromycin are released.
Most of erythromycin is metabolised by demethylation in the liver. Its main route elimination route is in the bile, and a small portion in the urine.
Erythromycin's half-life is 1.5 hours.
Side-effects. More serious side-effects, such as reversible deafness are rare. Cholestatic jaundice, Stevens-Johnson syndrome and toxic epidermal necrosis are some other rare side effects that may occur.
Contraindications Earlier case reports on sudden death prompted a study on a large cohort that confirmed a link between erythromycin, ventricular tachycardia and sudden cardiac death in patients also taking drugs that prolong the metabolism of erythromycin (like verapamil or diltiazem)
erythromycin should not be administered in patients using these drugs, or drugs that also prolong the QT time.
Lamotrigine (Lamictal): newer; broad spectrum (for most seizure types)
Mechanism: ↓ reactivation of Na channels (↑ refractory period, blocks high frequency cell firing)
Side effects: dizziness, ataxia, fatigue, nausea, no significant drug interactions
Nystatin
Candida spp. are sensitive to nystatin.
Uses: Cutaneous, vaginal, mucosal and esophageal infections.
Candida infections can be treated with nystatin.
Cryptococcus is also sensitive to nystatin.
Nystatin is often used as prophylaxis in patients who are at risk for fungal infections, such as AIDS patients with a low CD4+ count and patients receiving chemotherapy.
MOA
nystatin binds to ergosterol, the main component of the fungal cell membrane. When present in sufficient concentrations, it forms a pore in the membrane that leads to K+ leakage and death of the fungus.
TRICYCLIC ANTIDEPRESSANTS
e.g. amitriptyline, imipramine, nortriptyline
Belong to first generation antidepressants
ACTION:
Inhibit 5-HT(5-hydroxytryptamine) and norepinephrine reuptake
slow clearance of norepinephrine & 5-HT from the synapse
enhance norepinephrine & 5-HT neuro-transmission
MODE OF ACTIONMODE OF ACTION
TCAs also block
– muscarinic acetylcholine receptors
– histamine receptors
– 5-HT receptors
– α1 adrenoceptors
Onset of antidepressant activity takes 2-3 weeks
PHARMACOKINETICS
- Readily absorbed from the gastro-intestinal tract
- Bind strongly to plasma albumin
- Has a large volume of distribution(as a result of binding to extravascular tissues)
- Undergo liver CYP metabolism into biologically active metabolites
- These metabolites are inactivated via glucuronidation and excreted in urine
ADVERSE DRUG REACTIONS
Antimuscarinic - dry mouth, blurred vision, constipation and urinary retention
Antihistamine – drowsiness
adrenoceptor blockage(+/- central effect) postural hypotension
Reduce seizure threshold
Testicular enlargement, gynaecomastia, galactorrhoea
AV-conduction blocks and cardiac arrhythmias
TOXICITY
- Fatal in toxicity
- Most important toxic effect is, slowing of depolarisation of the cardiac action potential by blocking fast sodium channels ("quinidine-like" effect)
- delays propagation of depolarisation through both myocardium and conducting tissue
- prolongation of the QRS complex and the PR/QT intervals
- predisposition to cardiac arrhythmias
DRUG INTERACTIONS
Pharmacodynamic:
– ↑ sedation with antihistamines, alcohol
– ↑ antimuscarinic effects with anticholinergics– ↑ antimuscarinic effects with anticholinergics
– Hypertension and arrhythmias with MAOIs- should be given at least 14 days apart
Pharmacokinetic (via altering CYP metabolism)
– ↓ plasma concentration of TCA by- carbamazepine, rifampicin
– ↑ plasma concentration of TCA by- cimetidine, calcium channel blockers,fluoxetine
OTHER CLINICAL USES OF AMITRIPTYLINE
- Treatment of nocturnal enuresis in children
- Treatment of neuropathic pain
- Migraine prophylaxis
Barbiturates
1. Long-acting. Phenobarbital is used to treat certain types of seizures (see section on antiepileptic drugs).
2. Intermediate-acting. Amobarbital, pentobarbital (occasionally used for sleep), secobarbital.
3. Short-acting. Hexobarbital, methohexital, thiopental—rarely used as IV anesthetics.
Prostaglandines:
Every cell in the body is capable of synthesizing one or more types of PGS. The four major group of PGs are E, F, A, and B.
Pharmacological actions:
stimulation of cyclicAMP production and calcium use by various cells
CVS
PGE2 acts as vasodilator; it is more potent hypotensive than Ach and histamine
Uterous
PGE2 and PGF2α Contract human uterus
Bronchial muscle
PGF2α and thromboxan A2 cause bronchial muscle contraction.
PGE2 & PGI2 cause bronchial muscle dilatation
GIT: PGE2 and PGF2α cause colic and watery diarrhoea
Platelets
Thromboxan A2 is potent induce of platelets aggregation
Kidney
PGE2 and PGI2 increase water, Na ion and K ion excretion (act as diuresis) that cause renal vasodilatation and inhibit
tubular reabsorption
USE
PGI2: Epoprostenol (inhibits platelets aggregation)
PGE1: Alprostadil (used to maintain the potency of arterioles in neonates with congenital heart defects).
PGE2: Dinoproste (used as pessaries to induce labor)
Synthetic analogue of PGE1: Misoprostol (inhibit the secretion of HCl).
Quinolone
Quinolones and fluoroquinolones form a group of broad-spectrum antibiotics. They are derived from nalidixic acid.
Fluoroquinolone antibiotics are highly potent and considered relatively safe.
MOA : Quinolones act by inhibiting the bacterial DNA gyrase enzyme. This way they inhibit nucleic acid synthesis and act bacteriocidically.
Drugs :Nalidixic acid, Ciprofloxacin , Levofloxacin, Norfloxacin ,Ofloxacin, Moxifloxacin , Trovafloxacin