Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Pharmacology

Structure of the CNS 

The CNS is a highly complex tissue that controls all of the body activities and serves as a processing center that links the body to the outside world. 
It is an assembly of interrelated “parts”and “systems”that regulate their own and each other’s activity. 

1-Brain                                  
2-Spinal cord 

The brain is formed of 3 main parts: 

I. The forebrain
• cerebrum
• thalamus
• hypothalamus

II. The midbrain
III. The hindbrain
• cerebellum
• pons
• medulla oblongata

Different Parts of the Different Parts of the CNS & their functions CNS & their functions
The cerebrum(cerebral hemispheres):
It constitutes the largest division of the brain. 
The outer layer of the cerebrum is known as the “cerebral cortex”. 

The cerebral cortex is divided into different functional areas: 
1.Motorareas(voluntary movements) 
2.Sensoryareas(sensation) 
3.Associationareas(higher mental activities   as consciousness, memory, and behavior).


Deep in the cerebral hemispheres are located the “basal ganglia” which include the “corpus striatum”& “substantianigra”. 

The basal gangliaplay an important role in the control of “motor”activities

The thalamus:

It functions as a sensory integrating center for well-being and malaise. 
It receives the sensory impulses from all parts of the body and relays them to specific areas of the cerebral cortex.

The hypothalamus:

It serves as a control center for the entire autonomic nervous system. 
It regulates blood pressure, body temperature, water balance, metabolism, and secretions of the anterior pituitary gland.

The mid-brain: 

It serves as a “bridge”area which connects the cerebrum to the cerebellum and pons. 
It is concerned with “motor coordination”.

The cerebellum:

It plays an important role in maintaining the appropriate bodyposture& equilibrium.

The pons:

It bridges the cerebellum to the medulla oblongata. 
The “locus ceruleus”is one of the important areas of the pons.

The medulla oblongata:
 
It serves as an organ of conduction for the passage of impulses between the brain and spinal cord. 
It contains important centers: 
• cardioinhibitory 
• vasomotor 
• respiratory 
• vomiting(chemoreceptor trigger zone, CTZ).

The spinal cord:

It is a cylindrical mass of nerve cells that extends from the end of the medulla oblongata to the lower lumbar vertebrae. 
Impulses flow from and to the brain through descending and ascending tracts of the spinal cord.
 

Pramlintide -Amylin mimetics

Mechanism
synthetic analogue of human amylin that acts in conjunction with insulin
↓ release of glucagon
delays gastric emptying

Clinical use

type I and II DM

Chloramphenicol

derived from the bacterium Streptomyces venezuelae

Chloramphenicol is effective against a wide variety of microorganisms, but due to serious side-effects (e.g., damage to the bone marrow, including aplastic anemia) in humans, it is usually reserved for the treatment of serious and life-threatening infections (e.g., typhoid fever). It is used in treatment of cholera, as it destroys the

vibrios and decreases the diarrhoea. It is effective against tetracycline-resistant vibrios.It is also used in eye drops or ointment to treat bacterial conjunctivitis.

Mechanism and Resistance Chloramphenicol stops bacterial growth by binding to the bacterial ribosome (blocking peptidyl transferase) and inhibiting protein synthesis.

Chloramphenicol irreversibly binds to a receptor site on the 50S subunit of the bacterial ribosome, inhibiting peptidyl transferase. This inhibition consequently results in the prevention of amino acid transfer to growing peptide chains, ultimately leading to inhibition of protein formation.

Spectrum of activity: Broad-spectrum

Effect on bacteria: Bacteriostatic

Acid-Peptic disorders

This group of diseases include peptic ulcer, gastroesophageal reflux and Zollinger-Ellison syndrome.

Pathophysiology of acid-peptic disorders

Peptic ulcer disease is thought to result from an imbalance between cell– destructive effects of hydrochloric acid and pepsin on the one side, and cell-protective effects of mucus and bicarbonate on the other side. Pepsin is a proteolytic enzyme activated in gastric acid (above pH of 4, pepsin is inactive); also it can digest the stomach wall. A bacterium, Helicobacter pylori, is now accepted to be involved in the pathogenesis of peptic ulcer.

In gastroesophageal reflux the acidic contents of the stomach enter into the oesophagus causing a burning sensation in the region of the heart; hence the common name heartburn or other names such as indigestion and dyspepsia.

However, Zollinger-Ellison syndrome is caused by a tumor of gastrin secreting cells of the pancreas characterized by excessive secretion of gastrin that stimulates gastric acid secretion.

These disorders can be treated by the following classes of drugs:

A. Gastric acid neutralizers (antacids)
B. Gastric acid secretion inhibitors (antisecretory drugs)
C. Mucosal protective agents
D. Drugs that exert antimicrobial action against H.pylori

Nystatin

Candida spp. are sensitive to nystatin.

Uses: Cutaneous, vaginal,  mucosal and  esophageal  infections.

Candida infections can be treated with nystatin.

Cryptococcus is also sensitive to nystatin.

Nystatin is often used as prophylaxis in patients who are at risk for fungal infections, such as AIDS patients with a low CD4+ count and patients receiving chemotherapy.

MOA

nystatin binds to ergosterol, the main component of the fungal cell membrane. When present in sufficient concentrations, it forms a pore in the membrane that leads to K+ leakage and death of the fungus.

Local Anesthetics

1. Procaine (Novocaine)

a) Classic Ester type agent, first synthetic injectable local anesthetic.

 b) Slow onset and short duration of action

 2. Tetracaine (Pontocaine)

a) Ester type agent--ten times as potent and toxic as procaine.

 b) Slow onset but long duration of action.

 c) Available in injectable and topical applications.

 3. Propoxycaine (Ravocaine)

a) Ester type agent–five times as potent and toxic as procaine.

 b) Often combined with procaine to increase duration of action.

 4. Lidocaine (Xylocaine)

a) Versatile widely used amide type agent.

 b) Two - three times as potent and toxic as procaine.

 c) Rapid onset and relatively long duration of action.

 d) Good agent for topical application.

 5. Mepivacaine (Carbocaine)

a) Amide type agent similar to lidocaine.

 b) Without vasoconstrictor has only short duration of action.

6. Prilocaine (Citanest)

a) Amide type agent — less potent than lidocaine.

 b) Without vasoconstrictor has only short duration of action.

 c) Metabolized to o-toluidine which can cause methemoglobinemia — significant only with large doses of prilocaine.

 d) Higher incidences of paresthesia reported with 4 % preparation

7. Bupivacaine (Marcaine)

a) Amide type agent of high potency and toxicity.

 b) Rapid onset and very long duration of action even without vasoconstrictor.

 8. Articaine (Septocaine)

a) Amide type agent

 b) Only amide-type local anesthetic that contains an ester group, therefore metabolized both in the liver and plasma.

 c) Approved by the FDA in 2000

 d) Evidence points to improved diffusion through hard and soft tissues as compared to other local anesthetics.

 e) Reports of a higher incidence of paresthesia, presumably due to the 4% concentration

 f) Not recommended for use in children under 4 years of age

 

Class II Beta Blockers 

Block SNS stimulation of beta receptors in the heart and decreasing risks of ventricular fibrillation
– Blockage of SA and ectopic pacemakers: decreases automaticity 
– Blockage of AV increases the refractory period
- Increase AV nodal conduction ´ 
- Increase PR interval
- Reduce adrenergic activity

Treatment: Supraventricular tachycardia (AF, flutter, paroxysmal supraventricular tachycardia 
– Acebutolol 
– Esmolol 
– Propanolol 

Contraindications and Cautions 

• Contraindicated in sinus bradycardia P < 45
• Cardiogenic shock,  asthma or respiratory depression which could be made worse by the blocking of Beta receptors. 
• Use cautiously in patients with diabetes and thyroid dysfunction, which could be altered by the blockade of Beta receptors 
• Renal and hepatic dysfunction could alter the metabolism and excretion of these drugs.
 

Explore by Exams