Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Pharmacology

Ciprofloxacin : Ciprofloxacin is bactericidal and its mode of action depends on blocking of bacterial DNA replication by binding itself to an enzyme called DNA gyrase

Ciprofloxacin is a broad-spectrum antibiotic that is active against both Gram-positive and  Gram-negative bacteria.

Enterobacteriaceae, Vibrio,  Hemophilus influenzae, Neisseria gonorrhoeae

 Neisseria menigitidis,  Moraxella catarrhalis,  Brucella, Campylobacter,

 Mycobacterium intracellulare, Legionella sp., Pseudomonas aeruginosa,

Bacillus anthracis - that causes anthrax

Weak activity against: Streptococcus pneumoniae,

No activity against:  Bacteroides,  Enterococcus faecium, Ureaplasma urealyticum  and others

It is contraindicated in children, pregnancy, and epilepsy.

Ciprofloxacin can cause photosensitivity reactions and can elevate plasma

theophylline levels to toxic values. It can also cause  constipation and sensitivity to caffeine.

Dosage in respiratory infections is 500-1500 mg a day in 2 doses.

Thrombolytic Agents:

Tissue Plasminogen Activator (t-PA, Activase)

t-PA is a serine protease. It is a poor plasminogen activator in the absence of fibrin. t-PA binds to fibrin and activates bound plasminogen several hundred-fold more rapidly than it activates plasminogen in the circulation.

Streptokinase (Streptase)

Streptokinase is a protein produced by β-hemolytic streptococci. It has no intrinsic enzymatic activity, but forms a stable noncovalent 1:1 complex with plasminogen. This produces a conformational change that exposes the active site on plasminogen that cleaves a peptide bond on free plasminogen molecules to form free plasmin.

Urokinase (Abbokinase)

Urokinase is isolated from cultured human cells.Like streptokinase, it lacks fibrin specificity and therefore readily induces a systemic lytic state. Like t-PA, Urokinase is very expensive.

Contraindications to Thrombolytic Therapy:

• Surgery within 10 days, including organ biopsy, puncture of noncompressible vessels, serious trauma, cardiopulmonary resuscitation.

• Serious gastrointestinal bleeding within 3 months.

• History of hypertension (diastolic pressure >110 mm Hg).

• Active bleeding or hemorrhagic disorder.

• Previous cerebrovascular accident or active intracranial bleeding.

Aminocaproic acid:

Aminocaproic acid prevents the binding or plasminogen and plasmin to fibrin. It is a potent inhibitor for fibrinolysis and can reverse states that are associated with excessive fibrinolysis.

 Beta - Adrenergic Blocking Agents 
 
 Mechanisms of Action  
 
- Initial decrease in cardiac output, followed by reduction in peripheral vascular resistance. 
- Other actions include decrease plasma renin activity, resetting of baroreceptors,  release of vasodilator prostaglandins, and blockade of prejunctional beta-receptors.  

Advantages 

- Documented reduction in cardiovascular morbidity and mortality. 
- Cardioprotection: primary and secondary prevention against coronary artery events (i.e. ischemia, infarction, arrhythmias, death). 
- Relatively not expensive. 

Considerations 

- Beta blockers are used with caution in patients with bronchospasm. 
- Contraindicated in more than grade I AV, heart block. 
- Do not discontinue abruptly. 

 Side Effects
- Bronchospasm and obstructive airway disease. 
- Bradycardia  
- Metabolic effects (raise triglyerides levels and decrease HDL cholesterol; may worsen insulin sensitivity and cause glucose intolerance). Increased incidence of diabetes mellitus.  
- Coldness of extremities.  
- Fatigue. 
- Mask symptoms of hypoglycemia. 
- Impotence. 

Indications 

- First line treatment for hypertension as an alternative to diuretics. 
- Hypertension associated with coronary artery disease.
- Hyperkinetic circulation and high cardiac output hypertension (e.g., young hypertensives). 
- Hypertension associated with supraventricular tachycardia, migraine, essential tremors, or hypertrophic cardiomyopathy. 

Beta adrenergic blocker Drugs

Atenolol 25-100
Metoprolol 50-200 
Bisoprolol 2.5-10 

CARDIAC GLYCOSIDES

Cardiac glycosides (Digitalis)

Digoxin

Digitoxin

Sympathomimetics

Dobutamine

Dopamine

Vasodilators

α-blockers (prazosin)

Nitroprusside

ACE-inhibitors (captopril)

Pharmacology of Cardiac Glycosides

1. Positive inotropic effect (as a result of increase  C.O., the symptoms of CHF subside).

2. Effects on other cardiac parameters

1) Excitability

2) Conduction Velocity; slightly increased in atria & ventricle/significantly

reduced in conducting tissue esp. A-V node and His-Purkinje System

3) Refractory Period; slightly ^ in atria & nodal tissue/slightly v in ventricles

4) Automaticity; can be greatly augmented - of particular concern in ventricle

3. Heart Rate

-Decrease due to 1) vagal stimulation and 2) in the situation of CHF, due to improved hemodynamics

4 Blood Pressure

-In CHF, not of much consequence. Changes are generally secondary to improved cardiac performance.

-In the absence of CHF, some evidence for a direct increase  in PVR due to vasoconstriction.

5. Diuresis

-Due primarily to increase in  renal blood flow as a consequence of positive inotropic effect (increase CO etc.) Possibly some slight direct diuretic effect.

 Mechanism of Action of Cardiac Glycosides

Associated with an interaction with membrane-bound Na+-K+ ATPase (Na-K pump).

Clinical ramifications of an interaction of cardiac glycosides with the Na+ K pump.

I. Increase levels of Ca++, Increase therapeutic and toxic effects of cardiac glycosides

II. Decrease levels of K+ , Increase toxic effects of cardiac glycosides

Therapeutic Uses of Cardiac Glycosides

  • CHF
  • CHF accompanied by atrial fibrillation
  • Supraventricular arrhythmias

Organic Nitrates 
Relax smooth muscle in blood vessel
Produces vasodilatation
– Decreases venous pressure and venous return to the heart  Which decreases the cardiac work load and oxygen demand. 
– May have little effect on the coronary arteries CAD causes stiffening and lack of 
–    responsiveness in the coronary arteries 
– Dilate arterioles, lowering peripheral vascular resistance  Reducing the cardiac workload

Main effect related to drop in blood pressure by
– Vasodilation- pools blood in veins and capillaries, decreasing the volume of blood that the heart has to pump around (the preload)
– relaxation of the vessels which decreases the resistance the heart has to pump against (the afterload) 

Indications
- Myocardial ischemia 
– Prevention
– Treatment 

Nitroglycerin (Nitro-Bid)
• Used
– To relive acute angina pectoris 
– Prevent exercise induced angina 
– Decrease frequency and severity of acute anginal episodes

Type 
• Oral - rapidly metabolized in the liver only small amount reaches circulation 
• Sublingual – Transmucosal tablets and sprays 
• Transdermal  – Ointment s 
– Adhesive discs applied to the skin
• IV preparations 

Sublingual Nitroglycerine 
•  Absorbed directly into the systemic circulation,  Acts within 1-3 minutes , Lasts 30-60 min 

Topical Nitroglycerine 
• Absorbed directly into systemic circulation,   Absorption at a slower rate. ,  Longer duration of action 
Ointment - effective for 4-8 hours 
Transdermal disc - effective for 18-24 hours 

Isosorbide dinitrate 
• Reduces frequency and severity of acute anginal episodes
• Sublingual or chewable acts in 2 min. effects last 2-3 hours
• Orally, systemic effects in about 30 minutes and last about 4 hours after oral administration
    
Tolerance to Long-Acting Nitrates 
• Long-acting dosage forms of nitrates may develop tolerance
– Result in episodes of chest pain
– Short acting nitrates less effective 

Prevention of Tolerance 
• Use long-acting forms for approximately 12-16 hours daily during active periods and omit them during inactive periods or sleep 
• Oral or topical should be given every 6 hours X 3 doses allowing a rest period of 6 hours

Isosorbide dinitrate (Isordil, Sorbitrate) is used to reduce the frequency and severity of acute anginal episodes.
When given sublingually or in chewable tablets, it acts in about 2 minutes, and its effects last 2 to 3 hours. When higher doses are given orally, more drug escapes metabolism in the liver and produces systemic effects in approximately 30 minutes. Therapeutic effects last about 4 hours after oral administration

Isosorbide mononitrate (Ismo, Imdur) is the metabolite and active component of isosorbide dinitrate. It is well absorbed after oral administration and almost 100% bioavailable. Unlike other oral nitrates, this drug is not subject to first-pass hepatic metabolism. Onset of action occurs within 1 hour, peak effects occur between 1 and 4 hours, and the elimination half-life is approximately 5 hours. It is used only for prophylaxis of angina; it does not act rapidly enough to relieve acute attacks.

Insulin
Insulin is only given parenterally (subcutaneous or IV) Various preparations have different durations of action 
 

Preparation

Onset (hrs)

Peak (hrs)

Duration (hrs)

Lispro (rapid-acting) 15 min 0.5-1.5 3-4
Regular (short-acting) 0.5-1 2-4 5-7
NPH (intermediate) 1-2 6-12 18-24
Glargine (long-acting) 1 None >24

 

Mechanism

bind transmembrane insulin receptor
activate tyrosine kinase
phosphorylate specific substrates in each tissue type
liver
↑ glycogenesis
store glucose as glycogen
muscle
↑ glycogen and protein synthesis
↑ K+ uptake 
fat
increase triglyceride storage

Clinical use

type I DM
type II DM
life-threatening hyperkalemia
increases intracellular K+
stress-induced hyperglycemia
 

Toxicity
hypoglycemia
hypersensitivity reaction (very rare)

Insulin Synthesis
first generated as preproinsulin with an A chain and B chain connected by a C peptide. 
c-peptide is cleaved from proinsulin after packaging into vesicles leaving behind the A and B chains

Classification

I) Esters

 1. Formed from an aromatic acid and an amino alcohol.

 2. Examples of ester type local anesthetics:

 Procaine

Chloroprocaine

Tetracaine

Cocaine

Benzocaine- topical applications only

2) Amides

 1. Formed from an aromatic amine and an amino acid.

 2. Examples of amide type local anesthetics:

Articaine

Mepivacaine

Bupivacaine

Prilocaine

Etidocaine

Ropivacaine

Lidocaine

Explore by Exams