Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Pharmacology

Treatment modifications to consider if there are concerns regarding vasoconstrictors

- Monitor blood pressure and heart rate preoperatively

- Minimize administration of epinephrine or levonordefrin

- Monitor blood pressure and heart rate 5 min after injection

- May re-administer epinephrine or levonordefrin if blood pressure and heart rate are stable

- Continue to monitor as required

- Consider limiting epinephrine to 0.04 mg, levonordefrin to 0.2 mg

- Avoid epinephrine 1:50,000

- Never use epinephrine-impregnated retraction cord

Neurotransmitters can be classified into:
1. Biogenic amines:
ACh, NA, DA, 5-HT, Histamine
2. Amino acids:
Excitatory (glutamate & asparate)
Inhibitory (GABA& glycine)
3. Others:
Adenosine, melatonin

Flucloxacillin, important even now for its resistance to beta-lactamases produced by bacteria such as Staphylococcus species. It is still no match for MRSA (Methicillin Resistant Staphylococcus aureus).

The last in the line of true penicillins were the antipseudomonal penicillins, such as ticarcillin, useful for their activity against Gram-negative bacteria

Anticonvulsants: include carbamazepine (use when lithium not tolerated; may not be as effective) .

valproic acid (use when lithium not tolerated; rapid onset)

Pharmacodynamic Effects of NSAIDs

A. Positive

analgesic - refers to the relief of pain by a mechanism other than the reduction of inflammation (for example, headache);

- produce a mild degree of analgesia which is much less than the analgesia produced by opioid analgesics such as morphine

anti-inflammatory - these drugs are used to treat inflammatory diseases and injuries, and with larger doses - rheumatoid disorders

antipyretic - reduce fever; lower elevated body temperature by their action on the hypothalamus; normal body temperature is not reduced

Anti-platelet - inhibit platelet aggregation, prolong bleeding time; have anticoagulant effects

B. Negative

Gastric irritant

Decreased renal perfusion

Bleeding

(CNS effects)

Adverse effects

The two main adverse drug reactions (ADRs) associated with NSAIDs relate to gastrointestinal (GI) effects and renal effects of the agents.

Gastrointestinal ADRs

The main ADRs associated with use of NSAIDs relate to direct and indirect irritation of the gastrointestinal tract (GIT). NSAIDs cause a dual insult on the GIT - the acidic molecules directly irritate the gastric mucosa; and inhibition of COX-1 reduces the levels of protective prostaglandins.

Common gastrointestinal ADRs include:

Nausea, dyspepsia, ulceration/bleeding, diarrhoea

 

Risk of ulceration increases with duration of therapy, and with higher doses. In attempting to minimise GI ADRs, it is prudent to use the lowest effective dose for the shortest period of time..

 Ketoprofen and piroxicam appear to have the highest prevalence of gastric ADRs, while ibuprofen (lower doses) and diclofenac appear to have lower rates.

Commonly, gastrointestinal adverse effects can be reduced through suppressing acid production, by concomitant use of a proton pump inhibitor, e.g. omeprazole

Renal ADRs

NSAIDs are also associated with a relatively high incidence of renal ADRs. The mechanism of these renal ADRs is probably due to changes in renal haemodynamics (bloodflow), ordinarily mediated by prostaglandins, which are affected by NSAIDs.

Common ADRs associated with altered renal function include:

salt and fluid retention,hypertension

These agents may also cause renal impairment, especially in combination with other nephrotoxic agents. Renal failure is especially a risk if the patient is also concomitantly taking an ACE inhibitor and a diuretic - the so-called "triple whammy" effect.

In rarer instances NSAIDs may also cause more severe renal conditions.

interstitial nephritis, nephrotic syndrome, acute renal failure

Photosensitivity

Photosensitivity is a commonly overlooked adverse effect of many of the NSAIDs. These antiinflammatory agents may themselves produce inflammation in combination with exposure to sunlight. The 2-arylpropionic acids have proven to be the most likely to produce photosensitivity reactions, but other NSAIDs have also been implicated including piroxicam, diclofenac and benzydamine.

ibuprofen having weak absorption, it has been reported to be a weak photosensitising agent.

Other ADRs

Common ADRs, other than listed above, include: raised liver enzymes, headache, dizziness.

Uncommon ADRs include: heart failure, hyperkalaemia, confusion, bronchospasm, rash.

The COX-2 paradigm

It was thought that selective inhibition of COX-2 would result in anti-inflammatory action without disrupting gastroprotective prostaglandins.

The relatively selective COX-2 oxicam, meloxicam, was the first step towards developing a true COX-2 selective inhibitor. Coxibs, the newest class of NSAIDs, can be considered as true COX-2 selective inhibitors and include celecoxib, rofecoxib, valdecoxib, parecoxib and etoricoxib.

Thiazide diuretics

Chlorothiazide, Hydrochlorothiazide

Mechanism(s) of Action

1.    Block facilitated Na/Cl co-transport in the early distal tubule. This is a relatively minor Na absorption mechanism and the result is modest diuresis 

2.    Potassium wasting effect 

a.    Blood volume reduction leads to increased production of aldosterone 
b.    Increased distal Na load secondary to diuretic effect 
c.    a + b = increase Na (to blood) for K (to urine) exchange which produces indirect K wasting

3.    Increase distal Ca re-absorption (direct effect) 

o    causes an increase in plasma calcium.This is unimportant NORMALLY but makes thiazides VERY inappropriate choice for hypercalcemic patients.

4.    Anti-diuretic effect in nephrogenic diabetes insipidus patients secondary to depletion of Na and Water. 

Toxicity
 
•    Electrolyte imbalance (particularly hypokalemia) ,Agranulocytosis , Allergic reactions 
•    Hyperuricemia , Thrombocytopenia 
 

Antiarrhythmic Drugs

Cardiac Arrhythmias 
Can originate in any part of the conduction system or from atrial or ventricular muscle.
Result from
– Disturbances in electrical impulse formation (automaticity) 
– Conduction (conductivity) 
– Both

MECHANISMS OF ARRHYTHMIA
ARRHYTHMIA – absence of rhythm
DYSRRHYTHMIA – abnormal rhythm

ARRHYTHMIAS result from:
1. Disturbance in Impulse Formation
2. Disturbance in Impulse Conduction
- Block results from severely depressed conduction
- Re-entry or circus movement / daughter impulse

Types of Arrhythmias

• Sinus arrhythmias 
– Usually significant only 
– if they are severe or  prolonged 

• Atrial arrhythmias 
– Most significant in the presence of underlying heart disease
– Serious: atrial fibrillation can lead to the formation of clots in the heart 

• Nodal arrhythmias 
– May involve tachycardia and increased workload of the heart or bradycardia from heart block 

• Ventricular arrhythmias 
– Include premature ventricular contractions (PVCs), ventricular tachycardia, and ventricular fibrillation 

Class

Action

Drugs

I

Sodium Channel Blockade

 

  IA

Prolong repolarization
lengthen AP duration
Intermediate interaction with Na+ channels

Quinidine, procainamide, disopyramide

  IB

Shorten repolarization
shorten AP duration
rapid interaction with Na+ channels

Lidocaine, mexiletine, tocainide, phenytoin

  IC

Little effect on repolarization
no effect or minimal ↑ AP duration
slow interaction with Na+ channels

Encainide, flecainide, propafenone

II

Beta-Adrenergic Blockade

Propanolol, esmolol, acebutolol, l-sotalol

III

Prolong Repolarization (Potassium Channel Blockade; Other)

Ibutilide, dofetilide, sotalol (d,l), amiodarone, bretylium

IV

Calcium Channel Blockade

Verapamil, diltiazem, bepridil

Miscellaneous

Miscellaneous Actions

Adenosine, digitalis, magnesium

 

Indications
• To convert atrial fibrillation (AF) or flutter to normal sinus rhythm (NSR) 
• To maintain NSR after conversion from AF or flutter 
• When the ventricular rate is so fast or irregular that cardiac output is impaired
– Decreased cardiac output leads to symptoms of decreased systemic, cerebral, and coronary circulation 
• When dangerous arrhythmias occur and may be fatal if not quickly terminated 
– For example: ventricular tachycardia may cause cardiac arrest 

Mechanism of Action 
• Reduce automaticity (spontaneous depolarization of myocardial cells, including ectopic pacemakers) 
• Slow conduction of electrical impulses through the heart
• Prolong the refractory period of myocardial cells (so they are less likely to be prematurely activated by adjacent cells 
 

Explore by Exams