Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Pharmacology

PLASMA FRACTIONS:

a) Fresh frozen plasma.

b) Platelets.

c) Plasma concentrates.

d) Non-plasma recombinant factor concentrates.

Sulfonylureas

1st generation
tolbutamide
chlorpropamide

2nd generation

glyburide
glimepiride
glipizide

Mechanism

glucose normally triggers insulin release from pancreatic β cells by increasing intracellular ATP
→ closes K+ channels → depolarization → ↑ Ca2+ influx → insulin release

sulfonylureas mimic action of glucose by closing K+ channels in pancreatic β cells 
→ depolarization → ↑ Ca2+ influx → insulin release

its use results in

↓ glucagon release
↑ insulin sensitivity in muscle and liver

Clinical use

type II DM

stimulates release of endogenous insulin 
cannot be used in type I DM due to complete lack of islet function

Toxicity

first generation

disulfiram-like effects
especially chlorpropamide

second generation

hypoglycemia
weight gain

DOPAMINE

It is an immediate metabolic precursor of noradrenaline. It activates D1 receptors in several vascular beds, which causes vasodilatation. It acts on dopaminergic and other adrenergic receptors (α & β1).

Adverse effects of dopamine include nausea, vomiting, ectopic beats, anginal pain, tachycardia, palpitation and widened QRS.
Contraindications are atrial or ventricular tachyarrhythmias, hyperthyroidism and pheochromocytoma.

Anesthesia agents

1. Inhalation anesthetics (volatile anesthetics)

- gases : N2O, xenon

- Fluids (vaporisers)

2. Intravenous anesthetics

- Barbiturans : thiopental

- Others : propofol, etomidat

3. Pain killers

- Opioids: fentanyl, sufentanil, alfentanil, remifentanil, morphine

- Non Steroid Anti Inflamatory Drugs: ketonal, paracetamol

4. Relaxants

- Depolarising : succinilcholine

- Non depolarising : atracurium, cisatracurium, vecuronium, rocuronium

5. adiuvants

-benzodiazepins: midasolam, diazepam

Heparin:

  • Inhibits blood coagulation by forming complexes with an α2-globulin (Antithrombin III) and each of the activated proteases of the coagulation cascade (Kallikrein, XIIa, XIa, IXa, Xa, and Thrombin). After formation of the heparin-ATIII-coagulation factor, heparin is released and becomes available again to bind to free ATIII.
  • Blocks conversion of Prothrombin to Thrombin and thus inhibits the synthesis of Fibrin from Fibrinogen.
  • Inhibits platelet function and increases vascular permeability. May induce moderate to severe thrombocytopenia.
  • Is prescribed on a “unit” basis.
  • Heparin is not effective after oral administration and is generally administered by intravenous or subcutaneous injection. Intramuscular injections should be avoided.
  • Heparin does not cross the placenta and does not pass into the maternal milk.
  • is contraindicated in any situation where active bleeding must be avoided.

Ulcerative lesions, intracranial hemorrhage, etc.

Overdosage:

• Simple withdrawal.

• Protamine sulfate: Highly basic peptide that binds heparin and thus neutralizes its effects.

Acid-Peptic disorders

This group of diseases include peptic ulcer, gastroesophageal reflux and Zollinger-Ellison syndrome.

Pathophysiology of acid-peptic disorders

Peptic ulcer disease is thought to result from an imbalance between cell– destructive effects of hydrochloric acid and pepsin on the one side, and cell-protective effects of mucus and bicarbonate on the other side. Pepsin is a proteolytic enzyme activated in gastric acid (above pH of 4, pepsin is inactive); also it can digest the stomach wall. A bacterium, Helicobacter pylori, is now accepted to be involved in the pathogenesis of peptic ulcer.

In gastroesophageal reflux the acidic contents of the stomach enter into the oesophagus causing a burning sensation in the region of the heart; hence the common name heartburn or other names such as indigestion and dyspepsia.

However, Zollinger-Ellison syndrome is caused by a tumor of gastrin secreting cells of the pancreas characterized by excessive secretion of gastrin that stimulates gastric acid secretion.

These disorders can be treated by the following classes of drugs:

A. Gastric acid neutralizers (antacids)
B. Gastric acid secretion inhibitors (antisecretory drugs)
C. Mucosal protective agents
D. Drugs that exert antimicrobial action against H.pylori

Nitrous Oxide (N2O)

MAC 100%, blood/gas solubility ratio 0.47
- An inorganic gas., low solubility in blood, but greater solubility than N2
- Inflammable, but does support combustion.
- Excreted primarily unchanged through the lungs.
- It provides amnesia and analgesia when administered alone.
- Does not produce muscular relaxation.
- Less depressant to both the cardiovascular system and respiratory system than most of the other inhalational anesthetics.
- Lack of potency and tendency to produce anoxia are its primary limitations.
- The major benefit of nitrous oxide is its ability to reduce the amount of the secondary anesthetic agent that is necessary to reach a specified level of anesthesia.

Explore by Exams