Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Pharmacology

Antiarrhythmic Drugs

Cardiac Arrhythmias 
Can originate in any part of the conduction system or from atrial or ventricular muscle.
Result from
– Disturbances in electrical impulse formation (automaticity) 
– Conduction (conductivity) 
– Both

MECHANISMS OF ARRHYTHMIA
ARRHYTHMIA – absence of rhythm
DYSRRHYTHMIA – abnormal rhythm

ARRHYTHMIAS result from:
1. Disturbance in Impulse Formation
2. Disturbance in Impulse Conduction
- Block results from severely depressed conduction
- Re-entry or circus movement / daughter impulse

Types of Arrhythmias

• Sinus arrhythmias 
– Usually significant only 
– if they are severe or  prolonged 

• Atrial arrhythmias 
– Most significant in the presence of underlying heart disease
– Serious: atrial fibrillation can lead to the formation of clots in the heart 

• Nodal arrhythmias 
– May involve tachycardia and increased workload of the heart or bradycardia from heart block 

• Ventricular arrhythmias 
– Include premature ventricular contractions (PVCs), ventricular tachycardia, and ventricular fibrillation 

Class

Action

Drugs

I

Sodium Channel Blockade

 

  IA

Prolong repolarization
lengthen AP duration
Intermediate interaction with Na+ channels

Quinidine, procainamide, disopyramide

  IB

Shorten repolarization
shorten AP duration
rapid interaction with Na+ channels

Lidocaine, mexiletine, tocainide, phenytoin

  IC

Little effect on repolarization
no effect or minimal ↑ AP duration
slow interaction with Na+ channels

Encainide, flecainide, propafenone

II

Beta-Adrenergic Blockade

Propanolol, esmolol, acebutolol, l-sotalol

III

Prolong Repolarization (Potassium Channel Blockade; Other)

Ibutilide, dofetilide, sotalol (d,l), amiodarone, bretylium

IV

Calcium Channel Blockade

Verapamil, diltiazem, bepridil

Miscellaneous

Miscellaneous Actions

Adenosine, digitalis, magnesium

 

Indications
• To convert atrial fibrillation (AF) or flutter to normal sinus rhythm (NSR) 
• To maintain NSR after conversion from AF or flutter 
• When the ventricular rate is so fast or irregular that cardiac output is impaired
– Decreased cardiac output leads to symptoms of decreased systemic, cerebral, and coronary circulation 
• When dangerous arrhythmias occur and may be fatal if not quickly terminated 
– For example: ventricular tachycardia may cause cardiac arrest 

Mechanism of Action 
• Reduce automaticity (spontaneous depolarization of myocardial cells, including ectopic pacemakers) 
• Slow conduction of electrical impulses through the heart
• Prolong the refractory period of myocardial cells (so they are less likely to be prematurely activated by adjacent cells 
 

Cough is a protective reflex which helps in expulsion of respiratory secretion or foreign particles which are irritant to respiratory
tract. Irritation to any part of respiratory tract starting from pharynx to lungs carried impulses by afferent fibres in vagus and
sympathetic nerve to the cough centre in the medulla oblongata. \

Cough may be dry (without sputum or unproductive) or productive (with sputum production). 


Classification for drugs used in cough.

I. Pharyngeal demulcents

Certain lozenges, linctus and cough drops containing glycerine, liquorice and syrups.

II. Expectorants

Sodium and potassium citrate
Sodium and potassium acetate 
Potassium iodide 
Ammonium chloride & carbonate
Acetylcysteine 
Bromhexine 
Guaiphenesin 


III. Antitussive

i. Opioids

Codeine (as linctus) Pholcodeine 

ii. Non-opioids

Noscapine
Dextromethorphan
Pipazethate 

iii. Antihistaminics

Chlorpheniramine 
Diphenhydramine 
Promethazine

Erdosteine is recently introduced mucolytic with unique protective functions for the respiratory tract. It is indicated in the treatment of acute and chronic airway diseases such as bronchitis, rhinitis, sinusitis, laryngopharyngitis and exacerbations of chronic bronchitis.

Ketorolac

Mechanism of action

primary action responsible for its anti-inflammatory/antipyretic/analgesic effects is inhibition of prostaglandin synthesis through inhibition of the enzyme cyclooxygenase (COX). Ketorolac is not a selective inhibitor of COX enzymes

Indications: short-term management of pain

Contraindications

hypersensitivity to ketorolac, and against patients with the complete or partial syndrome of nasal polyps, angioedema, bronchospastic reactivity or other allergic manifestations to aspirin or other non-steroidal anti-inflammatory drugs (due to possibility of severe anaphylaxis).

Sufentanil

  • A synthetic opioid related to fentanyl.
  • About 7 times more potent than fentanyl.
  • Has a slightly more rapid onset of action than fentanyl.

Oxyphenbutazone: one of the metabolites of  phenylbutazone. Apazone.  Similar to  phenylbutazone, but less likely to cause  agranulocytosis

Clarithromycin Used to treat  pharyngitis, tonsillitis, acute maxillary

sinusitis, acute bacterial exacerbation of chronic  bronchitis,  pneumonia (especially atypical pneumonias associated with Chlamydia pneumoniae or TWAR), skin and skin structure infections, and, in HIV and AIDS patients to prevent, and to treat, disseminated Mycobacterium avium complex or MAC.

Unlike erythromycin, clarithromycin is acid-stable and can therefore be taken orally without being protected from gastric acids. It is readily absorbed, and diffused into most tissues and phagocytes.

Clarithromycin has a fairly rapid first-pass hepatic metabolism, i.e it is metabolised by the liver. However, this metabolite, 14-hydroxy clarithromycin is almost twice as active as clarithromycin.

Contraindications Clarithromycin should be used with caution if the patient has liver or kidney disease, certain heart problems (e.g., QTc prolongation or bradycardia), or a mineral imbalance (e.g., low potassium or magnesium levels).

Clotrimazole: Clotrimazole is a potent, specific inhibitor of p450 enzymes.

It is used in some antifungal medications, and in the treatment of yeast infections.

Explore by Exams