Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Pharmacology

Different Systems of the CNS & their functions

These systems are pathways formed of specific parts of the brain and the neurons connecting them. 

They include:
1.The pyramidal system 
2.The extrapyramidal system 
3.The limbic system 
4.The reticular formation 
5.The tuberohypophyseal system

The pyramidal system: 

It originates from the motor area of the cerebral cortex and passes through the spinal cord, therefore it is also known as the “corticospinaltract”. 
It is responsible for the regulation of the fine voluntary movements.

The extrapyramidal system: 

It also controls the motor functionbut involves areas other than the corticospinal tract. 
It is involved in the regulation of gross voluntary movements, thus it complements the function of the pyramidal system. 


The “basal ganglia” constitute an essential part of this system. 

Degenerative changes in the pathway running from the “substantianigra”to the “corpus striatum”(or nigrostriatal pathway) may cause tremors and muscle rigidity characteristic of “Parkinson’s disease”.


The limbic system: 

The major parts of this system are: the hypothalamus, the basal ganglia, the hippocampus(responsible for short term memory), and some cortical areas. 

The limbic system is involved in the control of “behavior”& “emotions”.


The reticular formation:

It is composed of interlacing fibers and nerve cells that run in all directions beginning from the upper part of the spinal cord and extending upwards. 
It is important in the control of “consciousness” and “wakefulness”.


The tuberohypophyseal system: 

It is a group of short neurons running from the hypothalamusto the hypophysis(pituitary gland) regulating its secretions.
 

Chloramphenicol

derived from the bacterium Streptomyces venezuelae

Chloramphenicol is effective against a wide variety of microorganisms, but due to serious side-effects (e.g., damage to the bone marrow, including aplastic anemia) in humans, it is usually reserved for the treatment of serious and life-threatening infections (e.g., typhoid fever). It is used in treatment of cholera, as it destroys the

vibrios and decreases the diarrhoea. It is effective against tetracycline-resistant vibrios.It is also used in eye drops or ointment to treat bacterial conjunctivitis.

Mechanism and Resistance Chloramphenicol stops bacterial growth by binding to the bacterial ribosome (blocking peptidyl transferase) and inhibiting protein synthesis.

Chloramphenicol irreversibly binds to a receptor site on the 50S subunit of the bacterial ribosome, inhibiting peptidyl transferase. This inhibition consequently results in the prevention of amino acid transfer to growing peptide chains, ultimately leading to inhibition of protein formation.

Spectrum of activity: Broad-spectrum

Effect on bacteria: Bacteriostatic

Class IV Calcium Channel Blockers
• Block the movement of calcium into conductile and contractile myocardial cells 
• Treatment: treatment of supraventricular tachycardia 
– Diltiazem 
– Verapamil 

Adverse Effects 
• Adverse effects associated with vasodilation of blood vessels throughout the body. 
• CNS – dizziness, weakness, fatigue, depression and headache, 
• GI upset, nausea, and vomiting. 
• Hypotension CHF, shock arrhythmias, and edema 
 

Meperidine (Demerol)

Meperidine is a phenylpiperidine and has a number of congeners. It is mostly effective in the CNS and bowel

  • Produces analgesia, sedation, euphoria and respiratory depression.
  • Less potent than morphine, 80-100 mg meperidine equals 10 mg morphine.
  • Shorter duration of action than morphine (2-4 hrs).
  • Meperidine has greater excitatory activity than does morphine and toxicity may lead to convulsions.
  • Meperidine appears to have some atropine-like activity.
  • Does not constrict the pupils to the same extent as morphine.
  • Does not cause as much constipation as morphine.
  • Spasmogenic effect on GI and biliary tract smooth muscle is less pronounced than that produced by morphine.
  • Not an effective antitussive agent.
  • In contrast to morphine, meperidine increases the force of oxytocin-induced contractions of the uterus.
  • Often the drug of choice during delivery due to its lack of inhibitory effect on uterine contractions and its relatively short duration of action.
  • It has serotonergic activity when combined with monoamine oxidase inhibitors, which can produce serotonin toxicity (clonus, hyperreflexia, hyperthermia, and agitation)

 

 Adverse reactions to Meperidine

• Generally resemble a combination of opiate and atropine-like effects.

- respiratory depression, - tremors, - delirium and possible convulsions, - dry mouth

• The presentation of mixed symptoms (stupor and convulsions) is quite common in addicts taking large doses of meperidine.

Paracetamol

Paracetamol or acetaminophen is analgesic and antipyretic drug that is used for the relief of fever, headaches, and other minor aches and pains.

paracetamol acts by reducing production of prostaglandins, which are involved in the pain and fever processes, by inhibiting the cyclooxygenase (COX)  enzyme.

Metabolism Paracetamol is metabolized primarily in the liver. At usual doses, it is quickly detoxified by combining irreversibly with the sulfhydryl group of glutathione to produce a non-toxic conjugate that is eventually excreted by the kidneys.

OXYMETAZOLINE
 

It is a directly acting sympathomimetic amine used in symptomatic relief in nasal congestion which increases mucosal secretion.

It is used:
- As a nasal decongestant in allergic rhinitis, with or without the addition of antazoline or sodium chromoglycate. 
- As an ocular decongestant in allergic conjunctivitis.

Compounds like naphazoline and xylometazoline are relatively selective α2 agonists, which on topical application produce local vasoconstriction.

Angiotensin

It is generated in the plasma from a precursor plasma globulin. It is involved in the electrolyte balance, plasma
volume and B.P

Angiotensin I:
Renin is an enzyme produced by the kidney in response to a number of factors including adrenergic activity (β1-
receptor) and sodium depletion. Renin converts a circulating glycoprotein (angiotensinogen) into an inactive material angiotensin-I. It gets activation during passage through pulmonary circulation to angiotensin II by (ACE). ACE is located on the luminal surface of capillary endothelial cells, particularly in the lungs & also present in many organ (e.g brain).


Angiotensin II:
Is an active agent, has a vasoconstrictor action on blood vessels & sodium and water retention

Explore by Exams