NEET MDS Lessons
Pharmacology
Ciprofloxacin : Ciprofloxacin is bactericidal and its mode of action depends on blocking of bacterial DNA replication by binding itself to an enzyme called DNA gyrase
Ciprofloxacin is a broad-spectrum antibiotic that is active against both Gram-positive and Gram-negative bacteria.
Enterobacteriaceae, Vibrio, Hemophilus influenzae, Neisseria gonorrhoeae
Neisseria menigitidis, Moraxella catarrhalis, Brucella, Campylobacter,
Mycobacterium intracellulare, Legionella sp., Pseudomonas aeruginosa,
Bacillus anthracis - that causes anthrax
Weak activity against: Streptococcus pneumoniae,
No activity against: Bacteroides, Enterococcus faecium, Ureaplasma urealyticum and others
It is contraindicated in children, pregnancy, and epilepsy.
Ciprofloxacin can cause photosensitivity reactions and can elevate plasma
theophylline levels to toxic values. It can also cause constipation and sensitivity to caffeine.
Dosage in respiratory infections is 500-1500 mg a day in 2 doses.
Structure of the CNS
The CNS is a highly complex tissue that controls all of the body activities and serves as a processing center that links the body to the outside world.
It is an assembly of interrelated “parts”and “systems”that regulate their own and each other’s activity.
1-Brain
2-Spinal cord
The brain is formed of 3 main parts:
I. The forebrain
• cerebrum
• thalamus
• hypothalamus
II. The midbrain
III. The hindbrain
• cerebellum
• pons
• medulla oblongata
Different Parts of the Different Parts of the CNS & their functions CNS & their functions
The cerebrum(cerebral hemispheres):
It constitutes the largest division of the brain.
The outer layer of the cerebrum is known as the “cerebral cortex”.
The cerebral cortex is divided into different functional areas:
1.Motorareas(voluntary movements)
2.Sensoryareas(sensation)
3.Associationareas(higher mental activities as consciousness, memory, and behavior).
Deep in the cerebral hemispheres are located the “basal ganglia” which include the “corpus striatum”& “substantianigra”.
The basal gangliaplay an important role in the control of “motor”activities
The thalamus:
It functions as a sensory integrating center for well-being and malaise.
It receives the sensory impulses from all parts of the body and relays them to specific areas of the cerebral cortex.
The hypothalamus:
It serves as a control center for the entire autonomic nervous system.
It regulates blood pressure, body temperature, water balance, metabolism, and secretions of the anterior pituitary gland.
The mid-brain:
It serves as a “bridge”area which connects the cerebrum to the cerebellum and pons.
It is concerned with “motor coordination”.
The cerebellum:
It plays an important role in maintaining the appropriate bodyposture& equilibrium.
The pons:
It bridges the cerebellum to the medulla oblongata.
The “locus ceruleus”is one of the important areas of the pons.
The medulla oblongata:
It serves as an organ of conduction for the passage of impulses between the brain and spinal cord.
It contains important centers:
• cardioinhibitory
• vasomotor
• respiratory
• vomiting(chemoreceptor trigger zone, CTZ).
The spinal cord:
It is a cylindrical mass of nerve cells that extends from the end of the medulla oblongata to the lower lumbar vertebrae.
Impulses flow from and to the brain through descending and ascending tracts of the spinal cord.
Beta - Adrenergic Blocking Agents
Mechanisms of Action
- Initial decrease in cardiac output, followed by reduction in peripheral vascular resistance.
- Other actions include decrease plasma renin activity, resetting of baroreceptors, release of vasodilator prostaglandins, and blockade of prejunctional beta-receptors.
Advantages
- Documented reduction in cardiovascular morbidity and mortality.
- Cardioprotection: primary and secondary prevention against coronary artery events (i.e. ischemia, infarction, arrhythmias, death).
- Relatively not expensive.
Considerations
- Beta blockers are used with caution in patients with bronchospasm.
- Contraindicated in more than grade I AV, heart block.
- Do not discontinue abruptly.
Side Effects
- Bronchospasm and obstructive airway disease.
- Bradycardia
- Metabolic effects (raise triglyerides levels and decrease HDL cholesterol; may worsen insulin sensitivity and cause glucose intolerance). Increased incidence of diabetes mellitus.
- Coldness of extremities.
- Fatigue.
- Mask symptoms of hypoglycemia.
- Impotence.
Indications
- First line treatment for hypertension as an alternative to diuretics.
- Hypertension associated with coronary artery disease.
- Hyperkinetic circulation and high cardiac output hypertension (e.g., young hypertensives).
- Hypertension associated with supraventricular tachycardia, migraine, essential tremors, or hypertrophic cardiomyopathy.
Beta adrenergic blocker Drugs
Atenolol 25-100
Metoprolol 50-200
Bisoprolol 2.5-10
Anti-Parkinson Drugs
The disease involves degeneration of dopaminergic neurons in the nigral-striatal pathway in the basal ganglia. The cause is usually unknown. Sometimes it is associated with hypoxia, toxic chemicals, or cerebral infections.
Strategy
1. Increase dopamine in basal ganglia.
2. Block muscarinic receptors in the basal ganglia, since cholinergic function opposes the action of dopamine in the basal ganglia.
3. Newer therapies, such as the use of β-adrenergic receptor blockers.
Drugs
a. L-dopa plus carbidopa (Sinemet).
b. Bromocriptine, pergolide, pramipexole, ropinirole.
c. Benztropine, trihexyphenidyl, biperiden, procyclidine.
d. Diphenhydramine.
e. Amantadine.
f. Tolcapone and entacapone.
g. Selegiline.
Mechanisms of action of three drugs affecting DOPA
1. L-dopa plus carbidopa:
L-dopa is able to penetrate the blood–brain barrier and is then converted into dopamine. Carbidopa inhibits dopa decarboxylase, which catalyzes the formation of dopamine.
Carbidopa does not penetrate the blood–brain barrier; it therefore prevents the conversion of L-dopa to dopamine outside the CNS but allows
the conversion of L-dopa to dopamine inside the CNS.
2. Bromocriptine, pergolide, pramipexole, and ropinirole are direct dopamine receptor agonists.
3. Benztropine, trihexyphenidyl, biperiden, and procyclidine are antimuscarinic drugs.
4. Diphenhydramine is an antihistamine that has antimuscarinic action.
5. Amantadine releases dopamine and inhibits neuronal uptake of dopamine.
6. Selegiline is an irreversible inhibitor of monoamine oxidase B (MAO-B), which metabolizes dopamine. Selegiline therefore increases the level of dopamine.
7. Tolcapone is an inhibitor of catechol-O-methyl transferase (COMT), another enzyme that metabolizes dopamine.
8. Entacapone is another COMT inhibitor.
Dopamine and acetylcholine.
Loss of dopaminergic neurons in Parkinsonism leads to unopposed action by cholinergic neurons. Inhibiting muscarinic receptors can help alleviate symptoms of Parkinsonism
Adverse effects
1. L-dopa
- The therapeutic effects of the drug decrease with time.
- Oscillating levels of clinical efficacy of the drug (“on-off” effect).
- Mental changes—psychosis.
- Tachycardia and orthostatic hypotension.
- Nausea.
- Abnormal muscle movements (dyskinesias).
2. Tolcapone, entacapone (similar to L-dopa).
3. Direct dopamine receptor agonists (similar to L-dopa).
4. Antimuscarinic drugs
- Typical antimuscarinic adverse effects such as dry mouth.
b. Sedation.
5. Diphenhydramine (see antimuscarinic drugs).
6. Amantadine
- Nausea.
- Dizziness.
- Edema.
- Sweating.
7. Selegiline
- Nausea.
- Dry mouth.
- Dizziness.
- Insomnia.
- Although selegiline is selective for MAO-B, it still can cause excessive toxicity in the presence of tricyclic antidepressants, SSRIs, and meperidine.
Indications
Parkinson’s disease is the obvious major use of the above drugs. Parkinson-like symptoms can occur with many antipsychotic drugs. These symptoms are often treated with antimuscarinic drugs or diphenhydramine.
Dental implications of anti-Parkinson drugs
1. Dyskinesia caused by drugs can present a challenge for dental treatment.
2. Orthostatic hypotension poses a risk when changing from a reclining to a standing position.
3. The dentist should schedule appointments at a time of day at which the best control of the disease occurs.
4. Dry mouth occurs with several of the drugs.
Neuron Basic Structure (How brain cells communicate)
• Synapse:A junction between the terminal button of an axon and the membrane of another neuron
• Terminal button(orbouton):The bud at the end of a branch of an axon; forms synapses with another neuron; sends information to that neuron.
• Neurotransmitter:A chemical that is released by a terminal button; has an excitatory or inhibitory effect on another neuron.
Different types of Synapses
1-Axo-denrdritic
2-Axo-axonal
3-Axo-somatic
Chemical transmission in the CNS
The CNS controls the main functions of the body through the action endogenous chemical substances known as “neurotransmitters”.
These neurotransmitters are stored in and secreted by neurons to “transmit”information to the postsynaptic sites producing either excitatoryor inhibitory responses.
Most centrally acting drugs exert their actions at the synaptic junctions by either affecting neurotransmitter synthesis, release, uptake, or by exerting direct agonistor antagonistaction on postsynaptic sites.
OXYMETAZOLINE
It is a directly acting sympathomimetic amine used in symptomatic relief in nasal congestion which increases mucosal secretion.
It is used:
- As a nasal decongestant in allergic rhinitis, with or without the addition of antazoline or sodium chromoglycate.
- As an ocular decongestant in allergic conjunctivitis.
Compounds like naphazoline and xylometazoline are relatively selective α2 agonists, which on topical application produce local vasoconstriction.
Celecoxib
is a highly selective COX-2 inhibitor and primarily inhibits this isoform of cyclooxygenase, whereas traditional NSAIDs inhibit both COX-1 and COX-2. Celecoxib is approximately 10-20 times more selective for COX-2 inhibition over COX-1.
Being a sulphonamide can cause skin rash & hypersensitivity rxn., occasional oedema& HT.
Indication
Osteoarthritis ( 100‐200mg BID ) , rheumatoid arthritis, dysmenorrhea, acute gouty attacks, acute musculoskeletal pain.