NEET MDS Lessons
Pharmacology
Stimulants:
Amphetamines: amphetamine is a substrate of serotonin and NE uptake transporters so in cytoplasm, it competes for transport into storage vesicles → ↑ [ ] in cytoplasm then excess amines bind to membrane transporter and are transported out of cell
Drugs:
a. Dextroamphetamine: psychomotor stimulant (↓ fatigue), short-term weight loss, prevents narcolepsy
b. Methylphenidate (Ritalin): prevents narcolepsy, treatment for ADD and ADHD
c. Methamphetamine: psychomotor stimulant, abused widely (cheap, easy to make)
Side effects:
a. CNS: euphoria, anxiety, agitation, delirium, paranoia, panic, suicidal/homicidal impulses, psychoses, tolerance (develops rapidly to most CNS effects), physical dependence (not clinically relevant)
b. CV: headache, chills, arrhythmias and HTN (may be fatal)
Antidiarrheal
Antidiarrheal drugs may be given to relieve the symptom (non-specific therapy) or may be given to treat the underlying cause of the symptom (specific therapy).
Ι. Drugs used for the symptomatic (non-specific) treatment of diarrhoea include:
• Opiates and opiate derivatives are the most effective (such as morphine), but it is not used because of potentially serious adverse effects. Other agents, such as diphenoxylate and loperamide, are commonly used.
• Adsorbent – demulcent products such as kaolin – pectin preparation may be included in antidiarrheal preparations. Unfortunately, they may adsorb nutrients and other drugs, including the antidiarrheal agents if given concurrently.
• Anticholinergic agents e.g. atropine is occasionally used to decrease abdominal cramping and pain associated with diarrhoea.
ΙΙ. Specific therapy may include the use of antibacterial agents that are recommended for use in carefully selected cases of bacterial enteritis. For example, severe diarrhoea by salmonella, shigella, campylobacter and clostridia species can be treated by antibiotics (ampicillin, chloramphenicol, co-trimoxazole).
Codeine
Codeine is methyl morphine, with a methyl substitution on the phenolic hydroxyl group of morphine. It is more lipophilic than morphine and thus crosses the blood–brain barrier faster.
- classified as a simple, or mild analgesic, codeine is often used in low doses as an oral analgesic has a much better oral/parenteral absorption ratio than morphine.
- Effective for mild to moderate pain.
- Constipation occurs
- Dizziness may occur in ambulatory patients.
- More potent histamine-releasing action than does morphine.
- Should not be administered by IV injection.
- Extremely effective antitussive agent and is used therapeutically for suppressing cough.
- In contrast to morphine, codeine overdose can occasionally lead to the production of seizures.
- Seizures can be treated with barbiturates.
- Respiratory depression can be counteracted with Naloxone.
- orally, 30 mg of codeine is equi-analgesic to 600 mg of aspirin, however, the effects of the two are additive, and occasionally synergistic
Paracetamol
Paracetamol or acetaminophen is analgesic and antipyretic drug that is used for the relief of fever, headaches, and other minor aches and pains.
paracetamol acts by reducing production of prostaglandins, which are involved in the pain and fever processes, by inhibiting the cyclooxygenase (COX) enzyme.
Metabolism Paracetamol is metabolized primarily in the liver. At usual doses, it is quickly detoxified by combining irreversibly with the sulfhydryl group of glutathione to produce a non-toxic conjugate that is eventually excreted by the kidneys.
Amoxicillin
a moderate-spectrum
β-lactam antibiotic used to treat bacterial infections caused by susceptible
Mode of action Amoxicillin acts by inhibiting the synthesis of bacterial cell walls. It inhibits cross-linkage between the linear peptidoglycan polymer chains that make up a major component of the cell wall of Gram-positive bacteria. microorganisms. It is usually the drug of choice within the class because it is better absorbed, following oral administration, than other beta-lactam antibiotics. Amoxicillin is susceptible to degradation by β-lactamase-producing bacteria, and so is often given clavulanic acid.
Microbiology Amoxicillin is a moderate-spectrum antibiotic active against a wide range of Gram-positive, and a limited range of Gram-negative organisms
Susceptible Gram-positive organisms : Streptococcus spp., Diplococcus pneumoniae, non β-lactamase-producing Staphylococcus spp., and Streptococcus faecalis.
Susceptible Gram-negative organisms Haemophilus influenzae, Neisseria gonorrhoeae, Neisseria meningitidis, Escherichia coli, Proteus mirabilis and Salmonella spp.
Resistant organisms Penicillinase producing organisms, particularly penicillinase producing Staphylococcus spp. Penicillinase-producing N. gonorrhoeae and H. influenzae are also resistant
All strains of Pseudomonas spp., Klebsiella spp., Enterobacter spp., indole-positive
Proteus spp., Serratia marcescens, and Citrobacter spp. are resistant.
The incidence of β-lactamase-producing resistant organisms, including E. coli, appears to be increasing.
Amoxicillin and Clavulanic acid Amoxicillin is sometimes combined with clavulanic acid, a β-lactamase inhibitor, to increase the spectrum of action against
Gram-negative organisms, and to overcome bacterial antibiotic resistance mediated through β-lactamase production.
Structure of the CNS
The CNS is a highly complex tissue that controls all of the body activities and serves as a processing center that links the body to the outside world.
It is an assembly of interrelated “parts”and “systems”that regulate their own and each other’s activity.
1-Brain
2-Spinal cord
The brain is formed of 3 main parts:
I. The forebrain
• cerebrum
• thalamus
• hypothalamus
II. The midbrain
III. The hindbrain
• cerebellum
• pons
• medulla oblongata
Different Parts of the Different Parts of the CNS & their functions CNS & their functions
The cerebrum(cerebral hemispheres):
It constitutes the largest division of the brain.
The outer layer of the cerebrum is known as the “cerebral cortex”.
The cerebral cortex is divided into different functional areas:
1.Motorareas(voluntary movements)
2.Sensoryareas(sensation)
3.Associationareas(higher mental activities as consciousness, memory, and behavior).
Deep in the cerebral hemispheres are located the “basal ganglia” which include the “corpus striatum”& “substantianigra”.
The basal gangliaplay an important role in the control of “motor”activities
The thalamus:
It functions as a sensory integrating center for well-being and malaise.
It receives the sensory impulses from all parts of the body and relays them to specific areas of the cerebral cortex.
The hypothalamus:
It serves as a control center for the entire autonomic nervous system.
It regulates blood pressure, body temperature, water balance, metabolism, and secretions of the anterior pituitary gland.
The mid-brain:
It serves as a “bridge”area which connects the cerebrum to the cerebellum and pons.
It is concerned with “motor coordination”.
The cerebellum:
It plays an important role in maintaining the appropriate bodyposture& equilibrium.
The pons:
It bridges the cerebellum to the medulla oblongata.
The “locus ceruleus”is one of the important areas of the pons.
The medulla oblongata:
It serves as an organ of conduction for the passage of impulses between the brain and spinal cord.
It contains important centers:
• cardioinhibitory
• vasomotor
• respiratory
• vomiting(chemoreceptor trigger zone, CTZ).
The spinal cord:
It is a cylindrical mass of nerve cells that extends from the end of the medulla oblongata to the lower lumbar vertebrae.
Impulses flow from and to the brain through descending and ascending tracts of the spinal cord.
Ampicillin offered a broader spectrum of activity than either of the original penicillins and allowed doctors to treat a broader range of both Gram-positive and Gram-negative infections. Ampicillin is often used in molecular biology as a test for the uptake of genes (e.g., by plasmids) by bacteria (e.g., E. coli)