Talk to us?

Pharmacology - NEETMDS- courses
NEET MDS Lessons
Pharmacology

Methyl salicylate

also known as oil of wintergreen, betula oil, methyl ester) is a natural product of many species of plants Structurally, it is methylated salicylic acid It is used as an ingredient in deep heating rubs

Amphotericin B

Main use is in systemic fungal infections (e.g. in immunocompromised patients), and in visceral leishmaniasis. Aspergillosis, cryptococcus infections (e.g. meningitis) and candidiasis are treated with amphotericin B. It is also used empirically in febrile immunocompromised patients who do not respond to broad-spectrum antibiotics.

MOA:

As with other polyene antifungals, amphotericin B associates with ergosterol, a membrane chemical of fungi, forming a pore that leads to K+ leakage and fungal cell death

Side effects: nephrotoxicity (kidney damage) , headache, vomiting, convulsions and fever

The side-effects are much milder when amphotericin B is delivered in liposomes

Fourth Generation:

These are extended spectrum antibiotics. They are resistant to beta lactamases.

Cefipime

PHARMACOLOGY OF VASOCONSTRICTORS

All local anesthetics currently used in dentistry today produce some degree of vasodilatation. This

characteristic results in the increased vascularity of the injected site and results in a shorter duration of local

anesthetic action due enhanced uptake of the local anesthetic into the bloodstream.

- Using a “chemical tourniquet” to prolong the effect of local anesthetics

- The vasoconstrictive action of epinephrine reduces uptake of local anesthetic resulting in a significant increase in the duration of local anesthetic action.

- the addition of vasoconstrictors in local anesthetic solutions will:

1. Prolong the effect of the local anesthetic

2. Increase the depth of anesthesia

3. Reduces the plasma concentration of the local anesthetic

4. Reduces the incidence of systemic toxicity

5. Reduces bleeding at surgical site

Local anesthetics containing epinephrine produce:

1. Localized

VASOCONSTRICTION MEDIATED BY ALPHA RECEPTOR ACTIVATION

 i. Hemostasis at surgical site

 ii. Ischemia of localized tissue

2. Systemic

HEART

 i. Increased heart rate (β1)

 ii. Increased force and rate of contraction (β 1)

 iii. Increased cardiac output

 iv. Increases oxygen demand

 v. Dilation of coronary arteries

 vi. Decreases threshold for arrhythmias 

LUNGS

 i. Bronchodilation (β2 )

SKELETAL MUSCLE
i. Predominately vasodilation (fight or flight response) (β 2 )

CNS

i. Minimal direct effect due to difficulty in crossing the blood-brain barrier. Most effects on the CNS are manifestations of the vasoconstrictor on other organs such as the heart.

Concentrations of vasoconstrictors

1. Epinephrine The most commonly used epinephrine dilution in dentistry today is 1:100000. However it appears that a 1:200000 concentration is comparable in effect to the 1:100000 concentration.

2. Levonordefrin Levonordefrin is a synthetic compound very similar in structure to epinephrine. It is the only alternate choice of vasoconstrictor to epinephrine. It is prepared as a 1:20000 (0.05mg/ml)(50 mcg/ml) concentration with 2 % mepivacaine.

Cardiovascular considerations

The plasma concentration of epinephrine in a patient at rest is 39 pg/ml.1 The injection of 1 cartridge of lidocaine 1:100000 epinephrine intraorally results in a doubling of the plasma concentration of epinephrine.

The administration of 15 mcg of epinephrine  increased heart rate an average of 25 beats/min with some individuals experiencing an increase of 70 beats/min.

Clinical considerations

It is well documented that reduced amounts of epinephrine should be administered to patients with:

HEART DISEASE (ANGINA HISTORYOF MI)

POORLY CONTROLLED HIGH BLOOD PRESSURE

It is generally accepted that the dose of epinephrine should be limited to 0.04 mg (40 mcg) for patients that have these medical diagnoses

Carbapenems: Broadest spectrum of beta-lactam antibiotics.

imipenem with cilastatin

meropenem

ertapenem

Monobactams: Unlike other beta-lactams, there is no fused ring attached to beta-lactam nucleus. Thus, there is less probability of cross-sensitivity reactions.

aztreonam

Beta-lactamase Inhibitors No antimicrobial activity. Their sole purpose is to prevent the inactivation of beta-lactam antibiotics by beta-lactamases, and as such, they are co-administered with beta-lactam antibiotics.

clavulanic acid

tazobactam

sulbactam

Biguanides

metformin

Mechanism

↓ gluconeogenesis


appears to inhibit complex 1 of respiratory chain

↑ insulin sensitivity
↑ glycolysis
↓ serum glucose levels
↓ postprandial glucose levels

Clinical use

first-line therapy in type II DM

Toxicity

no hypoglycemia
no weight gain
lactic acidosis is most serious side effect 
contraindicated in renal failure 

Inhalational Anesthetics

The depth of general anesthesia is directly proportional to the partial pressure of the anesthetic agent in the brain. These agents enter the body through the lungs, dissolve in alveolar blood and are transported to the brain and other tissues.

A. Rate of induction and rate of recovery from anesthesia:

1. The more soluble the agent is in blood, the more drug it takes to saturate the blood and the more time it takes to raise the partial pressure and the depth of anesthesia.

2. The less soluble the agent is in blood, the less drug it takes to saturate the blood and the less time it takes to raise the partial pressure and depth of anesthesia.

 

B. MAC (minimum alveolar concentration)

The MAC is the concentration of the anesthetic agent that represents the ED50 for these agents. It is the alveolar concentration in which 50% of the patients will respond to a surgical incision.

The lower the MAC the more potent the general anesthetic agent.

C. Inhalation Anesthetic Agents 

  • Nitrous Oxide
  • Ether
  • Halothane
  • Enflurane
  • Isoflurane

Explore by Exams