Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Pharmacology

Antidepressant Drugs

Drug treatment of depression is based on increasing serotonin (5-HT) or NE (or both) at synapses in selective tracts in the brain. This can be accomplished by different mechanisms.

Treatment takes several weeks to reach full clinical efficacy.

1. Tricyclic antidepressants (TCAs)
a. Amitriptyline
b. Desipramine
c. Doxepin
d. Imipramine
e. Protriptyline

2. Selective serotonin reuptake inhibitors (SSRIs)
a. Fluoxetine
b. Paroxetine
c. Sertraline
d. Fluvoxamine
e. Citalopram

3. Monoamine oxidase inhibitors (MAOIs)
a. Tranylcypromine
b. Phenelzine

4. Miscellaneous antidepressants

a. Bupropion
b. Maprotiline
c. Mirtazapine
d. Trazodone
e. St. John’s Wort

Antimania Drugs

These drugs are used to treat manic-depressive illness.

1. Lithium
2. Carbamazepine
3. Valproic acid

Ketoprofen

It acts by inhibiting the body's production of prostaglandin.

Griseofulvin

  • Griseofulvin is an antifungal drug. It is used both in animals and in humans, to treat ringworm infections of the skin and nails. It is derived from the mold Penicillium griseofulvum.
  • It is administered orally.

Piroxicam:

Half‐life of 45 hrs. Once‐daily dosing. Delay onset of  action.

High doses inhibits PMN migration, decrease oxygen  radical production, inhibits lymphocyte function. 

used to relieve the symptoms of  arthritis, primary dysmenorrhoea, pyrexia; and as an analgesic,non-selective  cyclooxygenase (COX) inhibitor

The risk of adverse side efects is nearly ten times higher than with other NSAIDs. Peptic ulcer (9.5 higher)

Hypothalamic - Pituitary Drugs

Somatropin

Growth hormone (GH) mimetic

Mechanism

agonist at GH receptors
increases production of insulin growth factor-1 (IGF-1)

Clinical use

GH deficiency
increase adult height for children with conditions associated with short stature 
Turner syndrome
wasting in HIV infection
short bowel syndrome

Toxicity

scoliosis
edema
gynecomastia
increased CYP450 activity


Octreotide

Somatostatin mimetic

Mechanism

agonist at somatostatin receptors

Clinical use

acromegaly
carcinoid
gastrinoma
glucagonoma
acute esophageal variceal bleed

Toxicity

GI upset
gallstones
bradycardia
Oxytocin

Mechanism

agonist at oxytocin receptor

Clinical use

stimulation of labor
uterine contractions
control of uterine hemorrhage after delivery
stimulate milk letdown

Toxicity

fetal distress 
abruptio placentae 
uterine rupture
Desmopressin
ADH (vasopressin) mimetic

Mechanism

agonist at vasopressin V2 receptors

Clinical use

central (pituitary) diabetes insipidus
hemophilia A (factor VIII deficiency)
increases availability of factor VIII
von Willebrand disease
increases release of von Willebrand factor from endothelial cells

Toxicity

GI upset
headache
hyponatremia
allergic reaction

SULPHONAMIDES

Derivative of  sulphonilamide (Para-amino Benzene (PABA ) sulphonamide).

Anti-bacterial spectrum

Bacteriostatic to gram + and gram - bacteria. but bactericidal concentrations arce attained in urine. S pyogencs. H influenzae.E coli, few- Staph aureus. gonococci. pneumococci, proteus, shigella and Lymphogranuloma venereum.

Mechanism of action

Inhibits bacterial folate synthetase as they compete with PABA

Less soluble in acid urine and may precipitate to cause crystalluria.

Accumulate in patients with renal failure and can cause toxicity

Classification

Shart Acting (4-8 Hrs) sulphadiazine, sulphamethizole.

Intermediate acting(8-16 Hrs): sulphamethoxazole , sulphaphenazole

Long Acting(l-7days): sulphamethoxypyridazine.

Ultralong Acting(3-8days): sulfaline

Adverse effects

I. nausea, vomiting and epigastric pain

2. crystalluria

3. hypersensitivity-like polyarthritis nodosa. Steven-Johnson Syndrome. photosenstivity

4.hemolysis in G-6PD deficiency

5. kernicterus

They inhibit metabolism of phenytoin. tolbutamide. methotrexate

Therapeutic Use

UTI Meningitis, Streptococcal pharyngitis, Bacillary Dysentery

A. Sympathetic Nervous System Depressants

1. Antagonists

Both α-adrenoceptor antagonists and β-adrenoceptor antagonists are useful  antihypertensives.

  • α-blocker                     Prazosin, phentolamine, phenoxybenzamine
  • β-blocker                     Propranolol ,Metoprolol, atenolol
  • α/β-blocker                  labetalol

2. Sympathetic depressants

a. Examples of peripherally acting agents include

  • reserpine This agent interferes with the storage of norepinephrine
  • quanethidine This agent interferes with the release of norepinephrine
  • trimethaphan This agent blocks transmission through autonomic ganglia.

b. Examples of Centrally acting agents include

  • alphamethyldopa
  • clonidine. These agents act by decreasing the number of impresses along sympathetic nerves.

Adverse Effect

include nasal congestion, postural hypotension, diarrhea, sexual dysfunction, dry mouth. sedation and drowsiness.

B. Directly Acting Vasodilators

Act on vascular smooth muscle cells independently of adrenergic nerves and adrenergic receptors.

Relaxation of vascular smooth muscle which leads to a decrease in peripheral vascular resistance.

Sites of action of vasodilators are many. For example

 Calcium Channel Blocker’s  MOA

. Decrease automaticity & conduction thru SA & AV nodes

. Decreased myocardial contractility

. Decreased peripheral & coronary 

smooth muscle tone = decrease SVR

Potassium channels activators

minoxidil, cause vasodilation by activating potassium channels in vascular smooth muscle.

An increase in potassium conductance results in hyperpolarization of the cell membrane which is associated with relaxation of smooth muscle.

Nitrovasodilators, such as sodium nitroprusside,

Increase in intracellular cGMP. cGMP in turn activates a protein kinase. Directly-Acting Vasodilators are on occasion used alone but more frequently are used in combination with antihypertensive agents from other classes (esp. a β-blocker and a diuretic.)

Explore by Exams