NEET MDS Lessons
Pharmacology
Antidepressant Drugs
Drug treatment of depression is based on increasing serotonin (5-HT) or NE (or both) at synapses in selective tracts in the brain. This can be accomplished by different mechanisms.
Treatment takes several weeks to reach full clinical efficacy.
1. Tricyclic antidepressants (TCAs)
a. Amitriptyline
b. Desipramine
c. Doxepin
d. Imipramine
e. Protriptyline
2. Selective serotonin reuptake inhibitors (SSRIs)
a. Fluoxetine
b. Paroxetine
c. Sertraline
d. Fluvoxamine
e. Citalopram
3. Monoamine oxidase inhibitors (MAOIs)
a. Tranylcypromine
b. Phenelzine
4. Miscellaneous antidepressants
a. Bupropion
b. Maprotiline
c. Mirtazapine
d. Trazodone
e. St. John’s Wort
Antimania Drugs
These drugs are used to treat manic-depressive illness.
1. Lithium
2. Carbamazepine
3. Valproic acid
Ketoprofen
It acts by inhibiting the body's production of prostaglandin.
Griseofulvin
- Griseofulvin is an antifungal drug. It is used both in animals and in humans, to treat ringworm infections of the skin and nails. It is derived from the mold Penicillium griseofulvum.
- It is administered orally.
Piroxicam:
Half‐life of 45 hrs. Once‐daily dosing. Delay onset of action.
High doses inhibits PMN migration, decrease oxygen radical production, inhibits lymphocyte function.
used to relieve the symptoms of arthritis, primary dysmenorrhoea, pyrexia; and as an analgesic,non-selective cyclooxygenase (COX) inhibitor
The risk of adverse side efects is nearly ten times higher than with other NSAIDs. Peptic ulcer (9.5 higher)
Hypothalamic - Pituitary Drugs
Somatropin
Growth hormone (GH) mimetic
Mechanism
agonist at GH receptors
increases production of insulin growth factor-1 (IGF-1)
Clinical use
GH deficiency
increase adult height for children with conditions associated with short stature
Turner syndrome
wasting in HIV infection
short bowel syndrome
Toxicity
scoliosis
edema
gynecomastia
increased CYP450 activity
Octreotide
Somatostatin mimetic
Mechanism
agonist at somatostatin receptors
Clinical use
acromegaly
carcinoid
gastrinoma
glucagonoma
acute esophageal variceal bleed
Toxicity
GI upset
gallstones
bradycardia
Oxytocin
Mechanism
agonist at oxytocin receptor
Clinical use
stimulation of labor
uterine contractions
control of uterine hemorrhage after delivery
stimulate milk letdown
Toxicity
fetal distress
abruptio placentae
uterine rupture
Desmopressin
ADH (vasopressin) mimetic
Mechanism
agonist at vasopressin V2 receptors
Clinical use
central (pituitary) diabetes insipidus
hemophilia A (factor VIII deficiency)
increases availability of factor VIII
von Willebrand disease
increases release of von Willebrand factor from endothelial cells
Toxicity
GI upset
headache
hyponatremia
allergic reaction
SULPHONAMIDES
Derivative of sulphonilamide (Para-amino Benzene (PABA ) sulphonamide).
Anti-bacterial spectrum
Bacteriostatic to gram + and gram - bacteria. but bactericidal concentrations arce attained in urine. S pyogencs. H influenzae.E coli, few- Staph aureus. gonococci. pneumococci, proteus, shigella and Lymphogranuloma venereum.
Mechanism of action
Inhibits bacterial folate synthetase as they compete with PABA
Less soluble in acid urine and may precipitate to cause crystalluria.
Accumulate in patients with renal failure and can cause toxicity
Classification
Shart Acting (4-8 Hrs) sulphadiazine, sulphamethizole.
Intermediate acting(8-16 Hrs): sulphamethoxazole , sulphaphenazole
Long Acting(l-7days): sulphamethoxypyridazine.
Ultralong Acting(3-8days): sulfaline
Adverse effects
I. nausea, vomiting and epigastric pain
2. crystalluria
3. hypersensitivity-like polyarthritis nodosa. Steven-Johnson Syndrome. photosenstivity
4.hemolysis in G-6PD deficiency
5. kernicterus
They inhibit metabolism of phenytoin. tolbutamide. methotrexate
Therapeutic Use
UTI Meningitis, Streptococcal pharyngitis, Bacillary Dysentery
A. Sympathetic Nervous System Depressants
1. Antagonists
Both α-adrenoceptor antagonists and β-adrenoceptor antagonists are useful antihypertensives.
- α-blocker Prazosin, phentolamine, phenoxybenzamine
- β-blocker Propranolol ,Metoprolol, atenolol
- α/β-blocker labetalol
2. Sympathetic depressants
a. Examples of peripherally acting agents include
- reserpine This agent interferes with the storage of norepinephrine
- quanethidine This agent interferes with the release of norepinephrine
- trimethaphan This agent blocks transmission through autonomic ganglia.
b. Examples of Centrally acting agents include
- alphamethyldopa
- clonidine. These agents act by decreasing the number of impresses along sympathetic nerves.
Adverse Effect
include nasal congestion, postural hypotension, diarrhea, sexual dysfunction, dry mouth. sedation and drowsiness.
B. Directly Acting Vasodilators
Act on vascular smooth muscle cells independently of adrenergic nerves and adrenergic receptors.
Relaxation of vascular smooth muscle which leads to a decrease in peripheral vascular resistance.
Sites of action of vasodilators are many. For example
Calcium Channel Blocker’s MOA
. Decrease automaticity & conduction thru SA & AV nodes
. Decreased myocardial contractility
. Decreased peripheral & coronary
smooth muscle tone = decrease SVR
Potassium channels activators
minoxidil, cause vasodilation by activating potassium channels in vascular smooth muscle.
An increase in potassium conductance results in hyperpolarization of the cell membrane which is associated with relaxation of smooth muscle.
Nitrovasodilators, such as sodium nitroprusside,
Increase in intracellular cGMP. cGMP in turn activates a protein kinase. Directly-Acting Vasodilators are on occasion used alone but more frequently are used in combination with antihypertensive agents from other classes (esp. a β-blocker and a diuretic.)