NEET MDS Lessons
Pharmacology
Ketamine
- Causes a dissociative anesthesia.
- Is similar to but less potent than phencyclidine.
- Induces amnesia, analgesia, catalepsy and anesthesia, but does not induce convulsions.
- The principal disadvantage of ketamine is its adverse psychic effects during emergence from anesthesia. These include: hallucinations, changes in mood and body image.
- During anesthesia, many of the protective reflexes are maintained, such as laryngeal, pharyngeal, eyelid and corneal reflexes.
- Muscle relaxation is poor.
- It is not indicated for intracranial operations because it increases cerebrospinal fluid pressure.
- Respiration is well maintained.
- Arterial blood pressure, cardiac output, and heart rate are all elevated.
Itraconazole:
The drug may be given orally or intravenously.
Halothane (Fluothane) MAC 0.76%, Blood/gas solubility ratio 2.3
- Nonflammable.
- Any depth of anesthesia can be obtained in the absence of hypoxia.
- Halothane produces a marked hypotensive effect
- accompanies hypotension.
- Halothane “sensitizes” the ventricular conduction system in the heart to the action of catecholamines. However, ventricular arrhythmias are rare if
- respiratory acidosis, hypoxia and other causes of sympathetic stimulation are avoided.
- Respiration is depressed by all anesthetic concentrations.
- Halothane is metabolized to a significant extent and some of its metabolic produces have been shown to be hepatotoxic.
- Can produce a malignant hyperpyrexia due to an uncontrolled hypermetabolic reaction in skeletal muscle.
Halothane is generally used with nitrous oxide, an opiate and a neuromuscular blocking drug.
Sedative-Hypnotic Drugs
Sedative drug is the drug that reduce anxiety (anxiolytic) and produce sedation and referred to as minor tranquillisers.
Hypnotic drug is the drug that induce sleep
Effects: make you sleepy; general CNS depressants
Uses: sedative-hypnotic (insomnia ), anxiolytic (anxiety, panic, obsessive compulsive, phobias), muscle relaxant (spasticity, dystonias), anticonvulsant (absence, status epilepticus, generalized seizures—rapid tolerance develops), others (pre-operative medication and endoscopic procedures, withdrawal from chronic use of ethanol or other CNS depressants)
1- For panic disorder alprazolam is effective.
2- muscle disorder: (reduction of muscle tone and coordination) diazepam is useful in treatment of skeletal muscle spasm e.g. muscle strain and spasticity of degenerative muscle diseases.
3-epilepsy: by increasing seizure threshold.
Clonazepam is useful in chronic treatment of epilepsy while diazepam is drug of choice in status epilepticus.
4-sleep disorder: Three BDZs are effective hypnotic agents; long acting flurazepam, intermediate acting temazepam and short
acting triazolam. They decrease the time taken to get to sleep They increase the total duration of sleep
5-control of alcohol withdrawals symptoms include diazepam, chlordiazepoxide, clorazepate and oxazepam.
6-in anesthesia: as preanesthetic amnesic agent (also in cardioversion) and as a component of balanced anesthesia
Flurazepam significantly reduce both sleep induction time and numbers of awakenings and increase duration of sleep and little rebound insomnia. It may cause daytime sedation.
Temazepam useful in patients who experience frequent awakening, peak sedative effect occur 2-3 hr. after an oral dose.
Triazolam used to induce sleep in recurring insomnia and in individuals have difficulty in going to sleep, tolerance develop within few days and withdrawals result in rebound insomnia therefore the drug used intermittently.
Drugs and their actions
1. Benzodiazepines: enhance the effect of gamma aminobutyric acid (GABA) at GABA receptors on chloride channels. This increases chloride channel conductance in the brain (GABA A A receptors are ion channel receptors).
2. Barbiturates: enhance the effect of GABA on the chloride channel but also increase chloride channel conductance independently of GABA, especially at high doses
3. Zolpidem and zaleplon: work in a similar manner to benzodiazepines but do so only at the benzodiazepine (BZ1) receptor type. (Both BZ1and BZ2 are located on chloride channels.)
4. Chloral hydrate: probably similar action to barbiturates.
5. Buspirone: partial agonist at a specific serotonin receptor (5-HT1A).
6. Other sedatives (e.g., mephenesin, meprobamate, methocarbamol, carisoprodol, cyclobenzaprine):
mechanisms not well-described. Several mechanisms may be involved.
7. Baclofen: stimulates GABA linked to the G protein, Gi , resulting in an increase in K + conductance and a decrease in Ca2+ conductance. (Other drugs mentioned above do not bind to the GABA B receptor.)
8. Antihistamines (e.g., diphenhydramine): block H1 histamine receptors. Doing so in the CNS leads to sedation.
9. Ethyl alcohol: its several actions include a likely effect on the chloride channel.
Angiotensin
It is generated in the plasma from a precursor plasma globulin. It is involved in the electrolyte balance, plasma
volume and B.P
Angiotensin I:
Renin is an enzyme produced by the kidney in response to a number of factors including adrenergic activity (β1-
receptor) and sodium depletion. Renin converts a circulating glycoprotein (angiotensinogen) into an inactive material angiotensin-I. It gets activation during passage through pulmonary circulation to angiotensin II by (ACE). ACE is located on the luminal surface of capillary endothelial cells, particularly in the lungs & also present in many organ (e.g brain).
Angiotensin II:
Is an active agent, has a vasoconstrictor action on blood vessels & sodium and water retention
Histamine:
Involved in inflammatory and anaphylactic reactions
Local application causes swelling redness, and edema, mimicking a mild inflammatory reaction.
Large systemic doses leads to profound vascular changes similar to those seen after shock or anaphylactic origin.
Storage: widely distributed; in tissues, primarily in mast cells; in blood- in basophils, platelets; non-mast cell sites (epidermis, CNS, regenerating cells)
Histamine Stored in complex with:
Heparin
Chondroitin Sulfate
Eosinophilic Chemotactic Factor
Neutrophilic Chemotactic Factor
Proteases
Release: during type I (IgE-mediated) immediate hypersensitivity rxns, tissue injury, in response to some drugs
a. Process: Fcε receptor on mast cell or basophil binds IgE, when Ag binds → ↑ PLC activity → histamine
Symptoms: bronchoconstriction, ↓ Pa, ↑ capillary permeability, edema
Action
H1 receptors are located mainly on smooth muscle cells in blood vessels and the respiratory and GI tracts. When histamine binds with these receptors producing the following effects.
-Contraction of smooth muscle in the bronchi and bronchioles producing bronchoconstraction.
-stimulation of vagus nerve endings to produce reflex bronchoconstraction and cough.
-Increased permeability of veins and capillaries, which allows fluid to flow into subcutaneous tissues and form edema (little lower blood pressure).
-Increased secretion of mucous glands. Mucosal edema and increased nasal mucus produce the nasal congestion characteristic of allergic rhinitis and the common cold.
-Stimulation of sensory peripheral nerve endings to cause pain and pruritus.
Histamine promotes vasodilation by causing vascular endothelium to release nitric oxide. This chemical signal diffuses to the vascular smooth muscle, where it stimulates cyclic guanosine monophosphate production, causing vasodilation.
H2-receptors present mostly in gastric glands and smooth muscle of some blood vessels. When receptors are stimulated, the main effects are increased secretion of gastric acid and pepsin, increased rate and force of myocardial contraction.
The H3-receptor functions as a negative-feedback mechanism to inhibit histamine synthesis and release in many body tissues. Stimulation of H3 receptors opposes the effects produced by stimulation of H1 receptors.
The H4- receptor is expressed in only a few cell types, and their role in drug action is unclear.
Drugs cause release of histamine:
Many drugs can cause release of histamine in the body.
-Intracutaneouse morphine injection in humans produced localized redness, localized edema and a diffuse redness. This is due to release of histamine.
-I.V. inj of curare may cause bronchial constriction due to release of histamine.
-codeine , papaverine, meperidine (pethedine), atropine, hydralizine and sympathomimetic amines, histamine releases by these drugs may not be significant unless they are administered I.V in large doses
Pharmacological effects
- If injected I.V. (0.1 mg of histamine) causes a sharp decline in the blood pressure, flushing of the face and headache.
- There is also stimulation of gastric acid secretion.
- If this injection is given to an asthmatic individual, there will be a marked decrease in vital capacity and a sever attack of asthma.
Circulatory effects of histamine:
The two factors involved in the circulatory action of histamine are:
Arteriolar dilatation and
Capillary permeability
So it leads to loss of plasma from circulation
Effect on gastric secretion:
Histamine is a potent stimulant of gastric Hcl secretion.
PHARMACOLOGY OF LOCAL ANESTHETICS
Characteristics
1. Block axon conduction (nerve impulse) when applied locally in appropriate concentrations.
2. Local anesthetic action must be completely reversible; however, the duration of the anesthetic block should be of sufficient length to allow completion of the planned treatment.
3. Produce minimal local toxic effects such as nerve and muscle damage as well as minimal systemic toxic effects of organ systems such as the cardiovascular and central nervous system.