NEET MDS Lessons
Pharmacology
Methyl salicylate
also known as oil of wintergreen, betula oil, methyl ester) is a natural product of many species of plants Structurally, it is methylated salicylic acid It is used as an ingredient in deep heating rubs
Clotrimazole: Clotrimazole is a potent, specific inhibitor of p450 enzymes.
It is used in some antifungal medications, and in the treatment of yeast infections.
Use of local anesthetics during pregnancy
Local anesthetics (injectable)
Drug FDA category
Articaine C
Bupivacaine C
Lidocaine B
Mepivacaine C
Prilocaine B
Vasoconstrictors
Epinephrine 1:200,000 or 1:100,000 C (higher doses)
Levonordefrin 1:20,000 Not ranked
Local anesthetics (topical)
Benzocaine C
Lidocaine B
Valdecoxib
used in the treatment of osteoarthritis, acute pain conditions, and dysmenorrhoea
Etoricoxib new COX-2 selective inhibitor
Sufentanil
- A synthetic opioid related to fentanyl.
- About 7 times more potent than fentanyl.
- Has a slightly more rapid onset of action than fentanyl.
Neurophysiology
Nerve fibers exhibit wide range of sensitivity to nerve blockade-in order of increasing resistance to block are the sensations of pain, cold, warmth, touch, pressure, proprioception and motor function
Nerve Fibers:
Types |
Size |
Speed |
Occurrence |
A (α) |
20 µm |
80 - 120 |
Myelinated (Primarily for muscular activity). |
β |
8 - 15 µm |
|
Myelinated (Touch and pressure) |
γ |
4 - 8 µm |
|
Myelinated (Muscle spindle tone) |
δ |
3 - 4 µm |
10-15 |
Myelinated (Pain and temperature sensation) |
B |
4 µm |
10-15 |
Myelinated (Preganglionic autonomic) |
C |
1-2 µm |
1 - 2 |
Unmyelinated (Pain and temperature sensation) |
Myelinated = faster conducting
Unmyelinated = slower conducting
- Small non-myelinated fibers (C- pain fibers) and smaller myelinated pre-ganglionic B fibers are more readily blocked than are larger myelinated fibers responsible for muscle activity and touch [A-alpha and A-beta].
- Clinically, a person would notice complete lack of sensation to a pinprick, while at the same time still be able to move their fingers.
Pharmacodynamic Effects of NSAIDs
A. Positive
analgesic - refers to the relief of pain by a mechanism other than the reduction of inflammation (for example, headache);
- produce a mild degree of analgesia which is much less than the analgesia produced by opioid analgesics such as morphine
anti-inflammatory - these drugs are used to treat inflammatory diseases and injuries, and with larger doses - rheumatoid disorders
antipyretic - reduce fever; lower elevated body temperature by their action on the hypothalamus; normal body temperature is not reduced
Anti-platelet - inhibit platelet aggregation, prolong bleeding time; have anticoagulant effects
B. Negative
Gastric irritant
Decreased renal perfusion
Bleeding
(CNS effects)
Adverse effects
The two main adverse drug reactions (ADRs) associated with NSAIDs relate to gastrointestinal (GI) effects and renal effects of the agents.
Gastrointestinal ADRs
The main ADRs associated with use of NSAIDs relate to direct and indirect irritation of the gastrointestinal tract (GIT). NSAIDs cause a dual insult on the GIT - the acidic molecules directly irritate the gastric mucosa; and inhibition of COX-1 reduces the levels of protective prostaglandins.
Common gastrointestinal ADRs include:
Nausea, dyspepsia, ulceration/bleeding, diarrhoea
Risk of ulceration increases with duration of therapy, and with higher doses. In attempting to minimise GI ADRs, it is prudent to use the lowest effective dose for the shortest period of time..
Ketoprofen and piroxicam appear to have the highest prevalence of gastric ADRs, while ibuprofen (lower doses) and diclofenac appear to have lower rates.
Commonly, gastrointestinal adverse effects can be reduced through suppressing acid production, by concomitant use of a proton pump inhibitor, e.g. omeprazole
Renal ADRs
NSAIDs are also associated with a relatively high incidence of renal ADRs. The mechanism of these renal ADRs is probably due to changes in renal haemodynamics (bloodflow), ordinarily mediated by prostaglandins, which are affected by NSAIDs.
Common ADRs associated with altered renal function include:
salt and fluid retention,hypertension
These agents may also cause renal impairment, especially in combination with other nephrotoxic agents. Renal failure is especially a risk if the patient is also concomitantly taking an ACE inhibitor and a diuretic - the so-called "triple whammy" effect.
In rarer instances NSAIDs may also cause more severe renal conditions.
interstitial nephritis, nephrotic syndrome, acute renal failure
Photosensitivity
Photosensitivity is a commonly overlooked adverse effect of many of the NSAIDs. These antiinflammatory agents may themselves produce inflammation in combination with exposure to sunlight. The 2-arylpropionic acids have proven to be the most likely to produce photosensitivity reactions, but other NSAIDs have also been implicated including piroxicam, diclofenac and benzydamine.
ibuprofen having weak absorption, it has been reported to be a weak photosensitising agent.
Other ADRs
Common ADRs, other than listed above, include: raised liver enzymes, headache, dizziness.
Uncommon ADRs include: heart failure, hyperkalaemia, confusion, bronchospasm, rash.
The COX-2 paradigm
It was thought that selective inhibition of COX-2 would result in anti-inflammatory action without disrupting gastroprotective prostaglandins.
The relatively selective COX-2 oxicam, meloxicam, was the first step towards developing a true COX-2 selective inhibitor. Coxibs, the newest class of NSAIDs, can be considered as true COX-2 selective inhibitors and include celecoxib, rofecoxib, valdecoxib, parecoxib and etoricoxib.