NEET MDS Lessons
Pharmacology
Sympathomimetics -Adrenergic Agents
The sympathomimetic or adrenergic or adrenomimetic drugs mimic the effects of adrenergic sympathetic nerve stimulation.
These are the important group of therapeutic agents which may be used to maintain blood pressure and in certain cases of severe bronchial asthma.
Mechanism of Action and Adrenoceptors
The catecholamines produce their action by direct combination with receptors located on the cell membrane. The adrenergic receptors are divided into two main groups – alpha and beta.
alpha receptor - stimulation produces excitatory effect and
beta receptor -stimulation usually produces inhibitory effect.
Alpha receptors: There are two major groups of alpha receptors, α1 and α2.
Activation of postsynaptic α1 receptors increases the intracellular concentration of calcium by activation of a phospholipase C in the cell membrane via G protein.
α2 receptor is responsible for inhibition of renin release from the kidney and for central aadrenergically mediated blood pressure depression.
Beta receptors:
a. Beta 1 receptors have approximately equal affinity for adrenaline and noradrenaline and are responsible for myocardial stimulation and renin release.
b. Beta 2 - receptors have a higher affinity for adrenaline than for noradrenaline and are responsible for bronchial muscle relaxation, skeletal muscle vasodilatation and uterine relaxation.
c. Dopamine receptors: The D1 receptor is typically associated with the stimulation of adenylyl cyclase. The important agonist of dopamine receptors is fenoldopam (D1) and bromocriptine (D2) and antagonist is clozapine (D4) .
Adrenergic drugs can also be classified into:
a. Direct sympathomimetics: These act directly on a or/and b adrenoceptors e.g. adrenaline, noradrenaline, isoprenaline, phenylephrine, methoxamine salbutamol etc.
b. Indirect sympathomimetics: They act on adrenergic neurones to release noradrenaline e.g. tyramine.
c. Mixed action sympathomimetics: They act directly as well as indirectly e.g. ephedrine, amphetamine, mephentermine etc.
Pharmacological Action of Sympathomimetics
Heart: Direct effects on the heart are determined largely by β1 receptors.
Adrenaline increases the heart rate, force of myocardial contraction and cardiac output
Blood vessels: Adrenaline and noradrenaline constrict the blood vessels of skin and mucous membranes.
Adrenaline also dilates the blood vessels of the skeletal muscles on account of the preponderance of β2 receptor
Blood pressure: Because of vasoconstriction (α1) and vasodilatation (β2) action of adrenaline, the net result is decrease in total peripheral resistance.
Noradrenaline causes rise in systolic, diastolic and mean blood pressure and does not cause vasodilatation (because of no action on β2 receptors) and increase in peripheral resistance due to its a action.
Isoprenaline causes rise in systolic blood pressure (because of β1 cardiac stimulant action) but marked fall in diastolic blood pressure (because of b2 vasodilatation action) but mean blood pressure generally falls.
GIT: Adrenaline causes relaxation of smooth muscles of GIT and reduce its motility.
Respiratory system: The presence of β2 receptors in bronchial smooth muscle causes relaxation and activation of these receptors by β2 agonists cause bronchodilatation.
Uterus: The response of the uterus to the atecholamines varies according to species
Eye: Mydriasis occur due to contraction of radial muscles of iris, intraocular tension is lowered due to less production of the aqueous humor secondary to vasoconstriction and conjunctival ischemia due to constriction of conjunctival blood vessels.
a. Urinary bladder: Detrusor is relaxed (b) and trigone is constricted (a) and both the actions tend to inhibit
micturition.
b. Spleen: In animals, it causes contraction (due to its a action) of the splenic capsule resulting in increase in number of RBCs in circulation.
c. It also cause contraction of retractor penis, seminal vesicles and vas deferens.
d. Adrenaline causes lacrimation and salivary glands are stimulated.
e. Adrenaline increases the blood sugar level by enhancing hepatic glycogenolysis and also by decreasing the uptake of glucose by peripheral tissues.
Adrenaline inhibits insulin release by its a-receptor stimulant action whereas it stimulates glycogenolysis by its b receptor stimulant action.
f. Adrenaline produces leucocytosis and eosinopenia and accelerates blood coagulation and also stimulates platelet aggregation.
Adverse Effects
Restlessness, anxiety, tremor, headache.
Both adrenaline and noradrenaline cause sudden increase in blood pressure, precipitating sub-arachnoid haemorrhage and occasionally hemiplegia, and ventricular arrhythmias.
May produce anginal pain in patients with ischemic heart disease.
Contraindications
a. In patients with hyperthyroidism.
b. Hypertension.
c. During anaesthesia with halothane and cyclopropane.
d. In angina pectoris.
Therapeutic Uses
Allergic reaction: Adrenaline is drug of choice in the treatment of various acute allergic disorders by acting as a physiological antagonist of histamine (a known mediator of many hypersensitivity reactions). It is used in bronchial asthma, acute angioneurotic edema, acute hypersensitivity reaction to drugs and in the treatment of anaphylactic shock.
Bronchial asthma: When given subcutaneously or by inhalation, adrenaline is a potent drug in the treatment of status asthmaticus.
Cardiac uses: Adrenaline may be used to stimulate the heart in cardiac arrest.
Adrenaline can also be used in Stokes-Adam syndrome, which is a cardiac arrest occurring at the transition of partial to complete heart block. Isoprenaline or orciprenaline may be used for the temporary treatment of partial or complete AV block.
Miscellaneous uses:
a. Phenylephrine is used in fundus examination as mydriatic agent.
b. Amphetamines are sometime used as adjuvant and to counteract sedation caused by antiepileptics.
c. Anoretic drugs can help the obese people.
d. Amphetamine may be useful in nocturnal enuresis in children.
e. Isoxsuprine (uterine relaxant) has been used in threatened abortion and dysmenorrhoea.
Classification
1. Natural Alkaloids of Opium
Phenanthrenes -> morphine, codeine, thebaine
Benzylisoquinolines -> papaverine, noscapine
2. Semi-synthetic Derivatives
diacetylmorphine (heroin) hydromorphone, oxymorphone hydrocodone, oxycodone
3. Synthetic Derivatives
phenylpiperidines pethidine, fentanyl, alfentanyl, sufentnyl
benzmorphans pentazocine, phenazocine, cyclazocine
propionanilides methadone
morphinans levorphanol
Classification Based on
a. Chemical structure
I. Sulphonamidcs.and others - c.g.. sulphadiazine. etc.
2. Beta-lactum ring - e.g.. penicillin
3. Tetracycline - e.g.. Oxytetracycline,.doxycycline.etc.
b. Mechanism of action
1. Inhibits cell-wall synthesis - penicillin. cephalosporin..cycloserine. etc.
2. Cause leakage from cell-membrane – polypeptides (polymyxin, Bacitracin), polyenes (Nystatin)
3. Inhibit protein synthesis - tetracyclines. chloramphenicols. erythromycin.
4. Cause mis-reading of mRNA code - aminoglycosides
5. Interfere with DNA function - refampicin.. metronidazole
6. Interfere with intermediary metabolism - sulphonamides. ethambutole
c. Type of organism against which it is primarily activate
I. Antibacterial - penicillin.
2. Antifungal - nystatin.
d. Spectrum of activity
1. Broad spectrum - tetracylines .
2. Narrow spectrum - penicillin G (penG). streptomycin.erythromycin
e. Type of action
I. Bacteriostatic - sulphonamides, erythromycin.tertracyclines
2. Bacteriocidal - penicillin. aminoglycoside
f. Source
I. Fungi - penicillin. cephalosporins
2. Bacteria - Polymyxin B
CNS acting drugs are of major therapeutic and clinical importance.
They can produce diverse physiologicaland psychologicaleffects such as:
•Induction of Anesthesia
•Relief of Pain
•Prevention of Epileptic seizures
•Reduction of Anxiety
•Treatment of Parkinsonism
•Treatment of Alzheimer's disease
•Treatment of Depression
•Centrally acting drugs also include drugs that are administered without medical intervention like tea, coffee, nicotine, and opiates.
Local anesthetic selection
Local anesthetics are typically divided into 3 main categories:
short, intermediate and long acting local anesthetics.
Based on duration of the procedure and the duration of the individual agents
|
|
Infiltration |
Nerve block |
||
|
|
Pulpal |
Soft tissue |
Pulpal |
Soft tissue |
|
Short |
30 min |
2-3 hrs |
45 min |
2-3 hrs |
|
Intermediate |
60 min |
2-3 hrs |
75-90 min |
3-4 hrs |
|
Long |
40 min |
5-6 hrs |
3-4 hrs |
6-8 hrs |
Short acting agents
1. Mepivacaine 3 %
2. Lidocaine 2%
Intermediate acting agents
1. Lidocaine 2% 1:100000 epi
2. Lidocaine 2% 1:50000 epi
3. Mepivacaine 2% 1:20000 neocobefrin
4. Prilocaine 4%
5. Articaine 4% 1:100000 epi
Long acting agents
1. Bupivacaine 0.5% 1:200000 epi
CARDIAC GLYCOSIDES
Cardiac glycosides (Digitalis)
Digoxin
Digitoxin
Sympathomimetics
Dobutamine
Dopamine
Vasodilators
α-blockers (prazosin)
Nitroprusside
ACE-inhibitors (captopril)
Pharmacology of Cardiac Glycosides
1. Positive inotropic effect (as a result of increase C.O., the symptoms of CHF subside).
2. Effects on other cardiac parameters
1) Excitability
2) Conduction Velocity; slightly increased in atria & ventricle/significantly
reduced in conducting tissue esp. A-V node and His-Purkinje System
3) Refractory Period; slightly ^ in atria & nodal tissue/slightly v in ventricles
4) Automaticity; can be greatly augmented - of particular concern in ventricle
3. Heart Rate
-Decrease due to 1) vagal stimulation and 2) in the situation of CHF, due to improved hemodynamics
4 Blood Pressure
-In CHF, not of much consequence. Changes are generally secondary to improved cardiac performance.
-In the absence of CHF, some evidence for a direct increase in PVR due to vasoconstriction.
5. Diuresis
-Due primarily to increase in renal blood flow as a consequence of positive inotropic effect (increase CO etc.) Possibly some slight direct diuretic effect.
Mechanism of Action of Cardiac Glycosides
Associated with an interaction with membrane-bound Na+-K+ ATPase (Na-K pump).
Clinical ramifications of an interaction of cardiac glycosides with the Na+ K pump.
I. Increase levels of Ca++, Increase therapeutic and toxic effects of cardiac glycosides
II. Decrease levels of K+ , Increase toxic effects of cardiac glycosides
Therapeutic Uses of Cardiac Glycosides
- CHF
- CHF accompanied by atrial fibrillation
- Supraventricular arrhythmias
Heroin (diacetyl morphine)
Heroin is synthetically derived from the natural opioid alkaloid morphine
Largely owing to its very rapid onset of action and very short half-life, heroin is a popular drug of abuse
It is most effective when used intravenously
Heroin is rapidly deacetylated to 6-monoacetyl morphine and morphine, both of which are active at the mu opioid receptor
More lipid soluble than morphine and about 2½ times more potent. It enters the CNS more readily.