NEET MDS Lessons
Pharmacology
Factors affecting onset and duration of action of local anesthetics
pH of tissue
pKa of drug
Time of diffusion from needle tip to nerve
Time of diffusion away from nerve
Nerve morphology
Concentration of drug
Lipid solubility of drug
Antiemetics
Antiemetic drugs are generally more effective in prophylaxis than treatment. Most antiemetic agents relieve nausea and vomiting by acting on the vomiting centre, dopamine receptors, chemoreceptors trigger zone (CTZ), cerebral cortex, vestibular apparatus, or a combination of these.
Drugs used in the treatment of nausea and vomiting belong to several different groups. These include:
1. Phenothiazines, such as chlorpromazine, act on CTZ and vomiting centre, block dopamine receptors, are effective in preventing or treating nausea and vomiting induced by drugs, radiation therapy, surgery and most other stimuli (e.g. pregnancy).
They are generally ineffective in motion sickness.
Droperidol had been used most often for sedation in endoscopy and surgery, usually in combination with opioids or benzodiazepines
2. Antihistamines such as promethazine and Dimenhyrinate are especially effective in prevention and treatment of motion.
3. Metoclopramide has both central and peripheral antiemetic effects. Centrally, it antagonizes the action of dopamine. Peripherally metoclopramide stimulates the release of acetylcholine, which in turn, increases the rate of gastric. It has similar indications to those of chlorpromazine.
4. Scopolamine, an anticholinergic drug, is very effective in reliving nausea & vomiting associated with motion sickness.
5. Ondansetron, a serotonin antagonist, is effective in controlling chemical-induced vomiting and nausea such those induced by anticancer drugs.
6. Benzodiazepines: The antiemetic potency of lorazepam and alprazolam is low. Their beneficial effects may be due to their sedative, anxiolytic, and amnesic properties
Thrombolytic Agents:
Tissue Plasminogen Activator (t-PA, Activase)
t-PA is a serine protease. It is a poor plasminogen activator in the absence of fibrin. t-PA binds to fibrin and activates bound plasminogen several hundred-fold more rapidly than it activates plasminogen in the circulation.
Streptokinase (Streptase)
Streptokinase is a protein produced by β-hemolytic streptococci. It has no intrinsic enzymatic activity, but forms a stable noncovalent 1:1 complex with plasminogen. This produces a conformational change that exposes the active site on plasminogen that cleaves a peptide bond on free plasminogen molecules to form free plasmin.
Urokinase (Abbokinase)
Urokinase is isolated from cultured human cells.Like streptokinase, it lacks fibrin specificity and therefore readily induces a systemic lytic state. Like t-PA, Urokinase is very expensive.
Contraindications to Thrombolytic Therapy:
• Surgery within 10 days, including organ biopsy, puncture of noncompressible vessels, serious trauma, cardiopulmonary resuscitation.
• Serious gastrointestinal bleeding within 3 months.
• History of hypertension (diastolic pressure >110 mm Hg).
• Active bleeding or hemorrhagic disorder.
• Previous cerebrovascular accident or active intracranial bleeding.
Aminocaproic acid:
Aminocaproic acid prevents the binding or plasminogen and plasmin to fibrin. It is a potent inhibitor for fibrinolysis and can reverse states that are associated with excessive fibrinolysis.
Erythromycin
used for people who have an allergy to penicillins. For respiratory tract infections, it has better coverage of atypical organisms, including mycoplasma. It is also used to treat outbreaks of chlamydia, syphilis, and gonorrhea.
Erythromycin is produced from a strain of the actinomyces Saccaropolyspora erythraea, formerly known as Streptomyces erythraeus.
Mechanism of action Erythromycin prevents bacteria from growing, by interfering with their protein synthesis. Erythromycin binds to the subunit 50S of the bacterial ribosome, and thus inhibits the translocation of peptides.
Erythromycin is easily inactivated by gastric acids, therefore all orally administered formulations are given as either enteric coated or as more stable salts or esters. Erythromycin is very rapidly absorbed, and diffused into most tissues and phagocytes. Due to the high concentration in phagocytes, erythromycin is actively transported to the site of infection, where during active phagocytosis, large concentrations of erythromycin are released.
Most of erythromycin is metabolised by demethylation in the liver. Its main route elimination route is in the bile, and a small portion in the urine.
Erythromycin's half-life is 1.5 hours.
Side-effects. More serious side-effects, such as reversible deafness are rare. Cholestatic jaundice, Stevens-Johnson syndrome and toxic epidermal necrosis are some other rare side effects that may occur.
Contraindications Earlier case reports on sudden death prompted a study on a large cohort that confirmed a link between erythromycin, ventricular tachycardia and sudden cardiac death in patients also taking drugs that prolong the metabolism of erythromycin (like verapamil or diltiazem)
erythromycin should not be administered in patients using these drugs, or drugs that also prolong the QT time.
Pharmacology is the study of drugs and the way they interact with living systems. Clinical pharmacology is the study of drugs in humans.
A drug is any chemical that can effect living processes.
Therapeutics: the medical use of drugs.
An ideal drug has several important properties. Three of these properties are of utmost importance: effectiveness, safety and selectivity.
Effectiveness: This is the most important quality that a drug can have. Effectiveness refers to the drug's ability to do what it is supposed to do.
Safety: Although no drug can be totally safe, proper usage can lessen the risks of adverse effects.
Selectivity: A truly selective drug would have no side effects, and would effect only the body process' for which it is designed and given. Therefore, there is no such thing as a selective drug.
Pharmacokinetics: The way the body deals with a drug. Pharmacokinetics is concerned with the processes of absorption, distribution, metabolism and excretion.
Pharmacodynamics: What a drug does to the body.
Pharmacokinetics and pharmacodynamics are two of the processes that determine how a person will respond to a drug. Other factors include how a drug is administered (dose, route, and timing of administration), interactions with other drugs, and individual physiological variables (weight, age, function of body systems).
Beta - Adrenoceptor blocking Agents
These are the agents which block the action of sympathetic nerve stimulation and circulating sympathomimetic amines on the beta adrenergic receptors.
At the cellular level, they inhibit the activity of the membrane cAMP. The main effect is to reduce cardiac activity by diminishing β1 receptor stimulation in the heart. This decreases the rate and force of myocardial contraction of the heart, and decreases the rate of conduction of impulses through the conduction system.
Beta blockers may further be classified on basis of their site of action into following two main classes namely
cardioselective beta blockers (selective beta 1 blockers)
non selective beta 1 + beta 2 blockers
Classification for beta adrenergic blocking agents.
A. Non-selective (β1+β2)
Propranolol Sotalol Nadolol Timolol Alprenolol Pindolol
With additional alpha blocking activity
Labetalol Carvedilol
B. β1 Selective (cardioselective)
Metoprolol Atenolol Bisoprolol Celiprolol
C. β2 Selective
Butoxamine
Mechanisms of Action of beta blocker
Beta adrenoceptor Blockers competitively antagonize the responses to catecholamines that are mediated by beta-receptors and other
adrenomimetics at β-receptors
Because the β-receptors of the heart are primarily of the β1 type and those in the pulmonary and vascular smooth muscle are β2 receptors, β1-selective antagonists are frequently referred to as cardioselective blockers.
β-adrenergic receptor blockers (β blockers)
1. Used more often than α blockers.
2. Some are partial agonists (have intrinsic sympathomimetic activity).
3. Propranolol is the prototype of nonselective β blockers.
4. β blocker effects: lower blood pressure, reduce angina, reduce risk after myocardial infarction, reduce heart rate and force, have antiarrhythmic effect, cause hypoglycemia in diabetics, lower intraocular pressure.
5. Carvedilol: a nonselective β blocker that also blocks α receptors; used for heart failure.
Neomycin
used as a topical preparation
Neomycin is not absorbed from the gastrointestinal tract, and has been used as a preventative measure for hepatic encephalopathy and hypercholesterolemia. By killing bacteria in the intestinal tract, it keeps ammonia levels low and prevents hepatic encephalopathy, especially prior to GI surgery. It is not given intravenously, as neomycin is extremely nephrotoxic (it causes kidney damage), especially compared to other aminoglycosides.