NEET MDS Lessons
Pharmacology
Class II Beta Blockers
Block SNS stimulation of beta receptors in the heart and decreasing risks of ventricular fibrillation
– Blockage of SA and ectopic pacemakers: decreases automaticity
– Blockage of AV increases the refractory period
- Increase AV nodal conduction ´
- Increase PR interval
- Reduce adrenergic activity
Treatment: Supraventricular tachycardia (AF, flutter, paroxysmal supraventricular tachycardia
– Acebutolol
– Esmolol
– Propanolol
Contraindications and Cautions
• Contraindicated in sinus bradycardia P < 45
• Cardiogenic shock, asthma or respiratory depression which could be made worse by the blocking of Beta receptors.
• Use cautiously in patients with diabetes and thyroid dysfunction, which could be altered by the blockade of Beta receptors
• Renal and hepatic dysfunction could alter the metabolism and excretion of these drugs.
Chloral hydrate
1. Short-acting sleep inducer—less risk of “hangover” effect the next day.
2. Little change on REM sleep.
3. Metabolized to trichloroethanol, an active metabolite; further metabolism inactivates the drug.
4. Used for conscious sedation in dentistry.
5. Can result in serious toxicity if the dose is not controlled.
Oxyphenbutazone: one of the metabolites of phenylbutazone. Apazone. Similar to phenylbutazone, but less likely to cause agranulocytosis
NSAIDs: Classification by Plasma Elimination Half Lives
Short Half Life (< 6 hours):
more rapid effect and clearance
• Aspirin (0.25-0.33 hrs),
• Diclofenac (1.1 ± 0.2 hrs)
• Ketoprofen (1.8± 0.4 hrs),
• Ibuprofen (2.1 ± 0.3 hrs)
• Indomethacin (4.6 ± 0.7 hrs)
Long Half Life (> 10 hours):
slower onset of effect and slower clearance
• Naproxen (14 ± 2 hrs)
• Sulindac (14 ± 8 hrs),
• Piroxicam (57 ± 22 hrs)
Excretion
Routes of drug excretion
The most important route of drug elimination from the body is via the kidney
Renal Drug Excretion
- Glomerular Filtration
- Passive Tubular Reabsorption: drugs that are lipid soluble undergo passive reabsorption from the tubule back into the blood.
- Active Tubular Secretion
Factors that Modify Renal Drug Excretion
- pH Dependent Ionization: manipulating urinary pH to promote the ionization of a drug can decrease passive reabsorption and hasten excretion.
- Competition for Active Tubular Transport
- Age: Infants have a limited capscity to excrete drugs.
Nonrenal Routes of Drug Excretion
Breast Milk
Bile, Lungs, Sweat and Saliva
The kidney is the major organ of excretion. The lungs become very important for volatile substances or volatile metabolites.
Drugs which are eliminated by the kidney are eliminated by:
a) Filtration - no drug is reabsorbed or secreted.
b) Filtration and some of the drug is reabsorbed.
c) Filtration and some secretion.
d) Secretion
By use of the technique of clearance studies, one can determine the process by which the kidney handles the drug.
Renal plasma clearance = U x V ml/min U / Cp = conc. of drug in urine
Cp = conc. of drug in plasma
V = urine flow in ml/min
Renal clearance ratio = renal plasma clearance of drug (ml/min) / GFR (ml/min)
Total Body Clearance = renal + non-renal
Carbenicillin
Antibiotic that is chemically similar to ampicillin. Active against gram-negative germs. It is well soluble in water and acid-labile.
Organic Nitrates
Relax smooth muscle in blood vessel
Produces vasodilatation
– Decreases venous pressure and venous return to the heart Which decreases the cardiac work load and oxygen demand.
– May have little effect on the coronary arteries CAD causes stiffening and lack of
– responsiveness in the coronary arteries
– Dilate arterioles, lowering peripheral vascular resistance Reducing the cardiac workload
Main effect related to drop in blood pressure by
– Vasodilation- pools blood in veins and capillaries, decreasing the volume of blood that the heart has to pump around (the preload)
– relaxation of the vessels which decreases the resistance the heart has to pump against (the afterload)
Indications
- Myocardial ischemia
– Prevention
– Treatment
Nitroglycerin (Nitro-Bid)
• Used
– To relive acute angina pectoris
– Prevent exercise induced angina
– Decrease frequency and severity of acute anginal episodes
Type
• Oral - rapidly metabolized in the liver only small amount reaches circulation
• Sublingual – Transmucosal tablets and sprays
• Transdermal – Ointment s
– Adhesive discs applied to the skin
• IV preparations
Sublingual Nitroglycerine
• Absorbed directly into the systemic circulation, Acts within 1-3 minutes , Lasts 30-60 min
Topical Nitroglycerine
• Absorbed directly into systemic circulation, Absorption at a slower rate. , Longer duration of action
Ointment - effective for 4-8 hours
Transdermal disc - effective for 18-24 hours
Isosorbide dinitrate
• Reduces frequency and severity of acute anginal episodes
• Sublingual or chewable acts in 2 min. effects last 2-3 hours
• Orally, systemic effects in about 30 minutes and last about 4 hours after oral administration
Tolerance to Long-Acting Nitrates
• Long-acting dosage forms of nitrates may develop tolerance
– Result in episodes of chest pain
– Short acting nitrates less effective
Prevention of Tolerance
• Use long-acting forms for approximately 12-16 hours daily during active periods and omit them during inactive periods or sleep
• Oral or topical should be given every 6 hours X 3 doses allowing a rest period of 6 hours
Isosorbide dinitrate (Isordil, Sorbitrate) is used to reduce the frequency and severity of acute anginal episodes.
When given sublingually or in chewable tablets, it acts in about 2 minutes, and its effects last 2 to 3 hours. When higher doses are given orally, more drug escapes metabolism in the liver and produces systemic effects in approximately 30 minutes. Therapeutic effects last about 4 hours after oral administration
Isosorbide mononitrate (Ismo, Imdur) is the metabolite and active component of isosorbide dinitrate. It is well absorbed after oral administration and almost 100% bioavailable. Unlike other oral nitrates, this drug is not subject to first-pass hepatic metabolism. Onset of action occurs within 1 hour, peak effects occur between 1 and 4 hours, and the elimination half-life is approximately 5 hours. It is used only for prophylaxis of angina; it does not act rapidly enough to relieve acute attacks.