Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Pharmacology

Drugs Used in Diabetes

Goals of diabetes treatment

lower serum glucose to physiologic range
keep insulin levels in physiologic range
eliminate insulin resistance

best initial step in management: weight loss, contractile-based exercise weight loss is more important for insulin sensitivity than is a low-carb diet

Modalities of diabetes treatment

Type I DM

insulin
low-sugar diet

Type II DM
exercise
diet
insulin

6 classes of drugs 

Insulin
Sulfonylureas -    Glyburide
Meglitinides  - Nateglinide
Biguanides    Metformin    
Glitazones (thiazolidinediones)    Pioglitazone
α-glucosidase inhibitors    Acarbose
GLP-1 mimetics (incretin mimetics)    Exenatide
Amylin analog    Pramlintide

Classification Based on

a. Chemical structure

I. Sulphonamidcs.and others - c.g.. sulphadiazine. etc.

2. Beta-lactum ring - e.g.. penicillin

3. Tetracycline - e.g.. Oxytetracycline,.doxycycline.etc.

b. Mechanism of action

1. Inhibits cell-wall synthesis - penicillin. cephalosporin..cycloserine. etc.

2. Cause leakage from cell-membrane – polypeptides (polymyxin,  Bacitracin), polyenes (Nystatin)

3. Inhibit protein synthesis - tetracyclines. chloramphenicols. erythromycin.

4. Cause mis-reading of mRNA code - aminoglycosides

5. Interfere with DNA function - refampicin.. metronidazole

6. Interfere with intermediary metabolism - sulphonamides. ethambutole

c. Type of organism against which it is primarily activate

I. Antibacterial - penicillin.

2. Antifungal - nystatin.

 

d. Spectrum of activity

1. Broad spectrum - tetracylines .

2. Narrow spectrum - penicillin G (penG). streptomycin.erythromycin

e. Type of action

I. Bacteriostatic - sulphonamides, erythromycin.tertracyclines

2. Bacteriocidal - penicillin. aminoglycoside

f. Source

I. Fungi - penicillin. cephalosporins

2. Bacteria - Polymyxin B

Flucloxacillin, important even now for its resistance to beta-lactamases produced by bacteria such as Staphylococcus species. It is still no match for MRSA (Methicillin Resistant Staphylococcus aureus).

The last in the line of true penicillins were the antipseudomonal penicillins, such as ticarcillin, useful for their activity against Gram-negative bacteria

Estimation of the risk of anesthesia (American Society of Anesthesiologists scale)

• ASA 1: healthy patient.

• ASA 2: patient with stable, treated illness like arterial hypertension, diabetes melitus, asthma bronchiale, obesity

• ASA 3: patient with systemic illness decreasing sufficiency like heart illness, late infarct

• ASA 4: patient with serious illness influencing his state like renal insuficiency, unstable hypertension, circulatory insuficiency

• ASA 5: patient in life treatening illness

• ASA 6: brain death- potential organ donor

Amoxicillin

a moderate-spectrum

β-lactam antibiotic used to treat bacterial infections caused by susceptible

Mode of action Amoxicillin acts by inhibiting the synthesis of bacterial cell walls. It inhibits cross-linkage between the linear peptidoglycan polymer chains that make up a major component of the cell wall of Gram-positive bacteria. microorganisms. It is usually the drug of choice within the class because it is better absorbed, following oral administration, than other beta-lactam antibiotics. Amoxicillin is susceptible to degradation by  β-lactamase-producing bacteria, and so is often given clavulanic acid.

Microbiology Amoxicillin is a moderate-spectrum antibiotic active against a wide range of Gram-positive, and a limited range of Gram-negative organisms

Susceptible Gram-positive organisms : Streptococcus spp., Diplococcus pneumoniae, non β-lactamase-producing Staphylococcus spp., and Streptococcus faecalis.

Susceptible Gram-negative organisms  Haemophilus influenzae, Neisseria gonorrhoeae, Neisseria meningitidis, Escherichia coli, Proteus mirabilis and Salmonella spp.

Resistant organisms Penicillinase producing organisms, particularly penicillinase producing Staphylococcus spp. Penicillinase-producing N. gonorrhoeae and H. influenzae are also resistant

All strains of Pseudomonas spp., Klebsiella spp., Enterobacter spp., indole-positive

Proteus spp., Serratia marcescens, and Citrobacter spp. are resistant.

The incidence of β-lactamase-producing resistant organisms, including E. coli, appears to be increasing.

Amoxicillin and Clavulanic acid Amoxicillin is sometimes combined with clavulanic acid, a β-lactamase inhibitor, to increase the spectrum of action against

Gram-negative organisms, and to overcome bacterial antibiotic resistance mediated through β-lactamase production.

Buspirone

1. Short half-life (2–4 hours).
2. Relieves anxiety.
3. Does not act as an anticonvulsant.
4. Is not a good muscle relaxant.
5. Minimum abuse potential.

Indomethacin

commonly used to reduce fever, pain, stiffness, and swelling. It works by inhibiting the production of prostaglandins, molecules known to cause these symptoms.

Indications

ankylosing spondylitis, rheumatoid arthritis, osteoarthritis, juvenile arthritis, psoriatic arthritis, Reiter's disease, Paget's disease of bone, Bartter's disease, pseudogout, dysmenorrhea (menstrual cramps), pericarditis, bursitis, tendonitis, fever, headaches, nephrogenic , diabetes insipidus (prostaglandin inhibits vasopressin's action in the kidney)

Indomethacin has also been used clinically to delay premature labor, reduce amniotic fluid in polyhydramnios, and to treat patent ductus arteriosus.

Mechanism of action

Indomethacin is a nonselective inhibitor of cyclooxygenase (COX) 1 and 2, enzymes that participate in prostaglandin synthesis from arachidonic acid. Prostaglandins are hormone-like molecules normally found in the body, where they have a wide variety of effects, some of which lead to pain, fever, and inflammation.

Prostaglandins also cause uterine contractions in pregnant women. Indomethacin is an effective tocolytic agent, able to delay premature labor by reducing uterine contractions through inhibition of PG synthesis in the uterus and possibly through  calcium channel blockade.

Indomethacin easily crosses the placenta, and can reduce fetal urine production to treat polyhydramnios. It does so by reducing renal blood flow and increasing renal vascular resistance, possibly by enhancing the effects of vasopressin on the fetal kidneys.

Adverse effects

Since indomethacin inhibits both COX-1 and COX-2, it inhibits the production of prostaglandins in the  stomach and intestines which maintain the mucous lining of the

gastrointestinal tract. Indomethacin, therefore, like other nonselective COX inhibitors, can cause ulcers.

Many NSAIDs, but particularly indomethacin, cause lithium retention by reducing its excretion by the kidneys.

Indomethacin also reduces plasma renin activity and aldosterone levels, and increases

sodium and potassium retention. It also enhances the effects of vasopressin. Together these may lead to:

edema (swelling due to fluid retention)

hyperkalemia (high potassium levels)

hypernatremia (high sodium levels)

hypertension (high blood pressure)

Sulindac:  Is a pro‐drug closely related to Indomethacin. 

Converted to the active form of the drug. 

Indications and toxicity similar to  Indomethacin

Explore by Exams