Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Pharmacology

Neuron Basic Structure (How brain cells communicate)

• Synapse:A junction between the terminal button of an axon and the membrane of another neuron
• Terminal button(orbouton):The bud at the end of a branch of an axon; forms synapses with another neuron; sends information to that neuron.
• Neurotransmitter:A chemical that is released by a terminal button; has an excitatory or inhibitory effect on another neuron.

Different types of Synapses
1-Axo-denrdritic 
2-Axo-axonal 
3-Axo-somatic

Chemical transmission in the CNS 


The CNS controls the main functions of the body through the action endogenous chemical substances known as “neurotransmitters”.
These neurotransmitters are stored in and secreted by neurons to “transmit”information to the postsynaptic sites producing either excitatoryor inhibitory responses.
Most centrally acting drugs exert their actions at the synaptic junctions by either affecting neurotransmitter synthesis, release, uptake, or by exerting direct agonistor antagonistaction on postsynaptic sites.

Osmotic diuretics

An osmotic diuretic is a type of diuretic that inhibits reabsorption of water and sodium. They are pharmacologically inert substances that are given intravenously. They increase the osmolarity of blood and renal filtrate.

Mechanism(s) of Action

1.    Reduce tissue fluid (edema) 
2.    Reflex cardiovascular effect by osmotic retention of fluid within vascular space which increases blood volume (contraindicated with Congestive heart failure) 
3.    Diuretic effect

o    Makes H2O reabsorption far more difficult for tubular segments insufficient Na & H2O capacity in distal segments
o    Increased intramedullary blood flow (washout)
o    Incomplete sodium recapture (asc. loop). this is indirect inhibition of Na reabsorption (Na stays in tubule because water stays) 
o    Net diuretic effect: 
    Tubular concentration of sodium decreases 
    Total amount of sodium lost amount increases 
    GFR unchanged or slightly increased

Toxicity

Circulatory overload, dilutional hyponatremia,  Hyperkalemia, edema, skin necrosis

Agents
Mannitol

Ketamine 
- Causes a dissociative anesthesia.
- Is similar to but less potent than phencyclidine.
- Induces amnesia, analgesia, catalepsy and anesthesia, but does not induce convulsions.
- The principal disadvantage of ketamine is its adverse psychic effects during emergence from anesthesia. These include: hallucinations, changes in mood and body image.
- During anesthesia, many of the protective reflexes are maintained, such as laryngeal, pharyngeal, eyelid and corneal reflexes.
- Muscle relaxation is poor.
- It is not indicated for intracranial operations because it increases cerebrospinal fluid pressure.
- Respiration is well maintained.
- Arterial blood pressure, cardiac output, and heart rate are all elevated.

Valproic acid: broad spectrum (for most seizure types)


Mechanism: blocks Ca T currents in thalamic neurons (prevents reverberating activity in absence seizures), ↓ reactivation of Na channels (in tonic/clonic seizures; prolongs refractory periods of neurons, prevents high frequency cell firing)


Side effects: very low toxicity; common = anorexia, N/V; at high doses inhibits platelet function (bruising and gingival bleeding); rarely see idiosyncratic hepatotoxicity


Drug interactions: induces hepatic microsomal enzymes (↓ effectiveness of other drugs), binds tightly to plasma proteins so displaces other drugs

CENTRAL NERVOUS SYSTEM PHARMACOLOGY

Antipsychotic Drugs

1. Phenothiazines

a. Aliphatic derivatives
(1) Chlorpromaxine
b. Piperidine derivatives
(1) Thioridazine
(2) Mesoridazine
c. Piperazine derivatives
(1) Fluphenazine
(2) Perphenazine
(3) Prochlorperazine
(4) Trifluoperazine

2. Haloperidol resembles the piperazine phenothiazines.

3. Thiothixene resembles the piperazine phenothiazines.

4. Others (e.g., loxapine, pimozide).

5. Newer and more atypical antipsychotic drugs:
a. Clozapine
b. Olanzapine
c. Quetiapine
d. Risperidone
e. Ziprasidone
f. Aripiprazole

Antidepressant Drugs

Drug treatment of depression is based on increasing serotonin (5-HT) or NE (or both) at synapses in selective tracts in the brain. This can be accomplished by different mechanisms.

Treatment takes several weeks to reach full clinical efficacy.

1. Tricyclic antidepressants (TCAs)
a. Amitriptyline
b. Desipramine
c. Doxepin
d. Imipramine
e. Protriptyline

2. Selective serotonin reuptake inhibitors (SSRIs)
a. Fluoxetine
b. Paroxetine
c. Sertraline
d. Fluvoxamine
e. Citalopram

3. Monoamine oxidase inhibitors (MAOIs)
a. Tranylcypromine
b. Phenelzine

4. Miscellaneous antidepressants

a. Bupropion
b. Maprotiline
c. Mirtazapine
d. Trazodone
e. St. John’s Wort

Antimania Drugs

These drugs are used to treat manic-depressive illness.

A. Drugs
1. Lithium
2. Carbamazepine
3. Valproic acid

Sedative Hypnotics

1. Benzodiazepines
2. Barbiturates
3. Zolpidem and zaleplon
4. Chloral hydrate
5. Buspirone
6. Other sedatives (e.g., mephenesin, meprobamate, methocarbamol, carisoprodol, cyclobenzaprine)
7. Baclofen
8. Antihistamines (e.g., diphenhydramine)
9. Ethyl alcohol

Antiepileptic Drugs

Phenytoin
Carbamazepine
Phenobarbital
Primidone
Gabapentin
Valproic acid
Ethosuximide

Anti-Parkinson Drugs

a. L-dopa plus carbidopa (Sinemet).
b. Bromocriptine, pergolide, pramipexole, ropinirole.
c. Benztropine, trihexyphenidyl, biperiden, procyclidine.
d. Diphenhydramine.
e. Amantadine.
f. Tolcapone and entacapone.
g. Selegiline.
 

Anti-Histamines:
 
The effect of histamine can be opposed in three ways:
1. Physiological antagonism: by using a drug to oppose the effect (e.g adrenaline). Histamine constricts bronchi,
causes vasodilatation which increases capillary permeability. Adrenaline opposes this effect by a mechanism unrelated to histamine.
2. By preventing histamine from reaching its site of action (receptors), By competition with H1-H2 receptors (Drug antagonisms).
3. By preventing the release of histamine. (adrenal steroids and sodium-cromoglycate can suppress the effect on the tissues)

Types of Anti-histamine drugs

Selected H1 antagonist drugs

First-generation H1 receptor antagonists:

Chlorpheniramine (Histadin) & Dexchlorpheniramine 
Diphenhydramine (Allermine)
Promethazine (Phenergan) -  strong CNS depressants
Cyproheptadine (Periactin)

ACTION
These drugs bind to both central and peripheral H1 receptors and can cause CNS depression or stimulation.

- They usually cause CNS depression (drowsiness,sedation) with usual therapeutic doses
- Cause CNS stimulation (anxiety, agitation) 
with excessive doses, especially in children. 
They also have Anticholinergic effects (e.g. dry mouth, urinary retention, constipation, blurred vision).


Second-generation H1 receptor antagonists (non-sedating) agents

Terfenadine
Fexofenadine
Loratadine
Acravistine and Cetirizine
Astemizol

Action

They cause less CNS epression because they are selective for peripheral H1 receptors and do not cross the blood brain barrier.

Indications for use

The drugs can relieve symptoms but don’t relieve hypersensitivity.

1) Allergic rhinitis. Some relief of sneezing, rhinorrhea, nasal airway obstruction and conjunctivitis are with the use of antihistamine.
2) Anaphylaxis. Antihistamine is helpful in treating urticaria and pruritus.
3) Allergic conjunctivitis. This condition, which is characterized by redness, itching and tearing of the eyes.
4) Drug allergies. Antihistamines may be given to prevent or treat reactions to drugs (e.g, before a dignostic test that
uses an iodine preparation).
5) Transfusions of blood and blood products.
6) Dermatologic conditions. Antihistamines are the drug of choice for treatment of allergic contact dermatitis and
acute Urticaria. Urticaria often occurs because the skin has many mast cells to release histamine.
7) Miscellaneous. Some antihistamines are commonly used for non-allergic disorder such as motion sickness, nausea, vomiting, sleep, cough or add to cough mixtures.

Contraindication

hypersensitivity to the drugs, narrow-angle glaucoma, prostatic hypertroph, stenosing peptic ulcer, bladder neck obstruction, during pregnancy and lactating women

Adverse effects:

Drowsiness and sedation
Anticholinergic
Some antihistamines may cause dizziness, fatigue, hypotention, headache, epigastric distress and photosensitivity
Serious adverse reaction including cardiac arrest & death, have been reported in patients receiving high dose astemizole

H2-receptor antagonists

 Cimetidine (Tagamate), Ranitidine (Zantac), Fomatidine, Nizatidine. 

Mechanism of action

Numerous factors influence acid secretion by the stomach, including food, physiological condition and drugs. H2 receptor blockers reduce basal acid-secretion by about 95% and food stimulated acid-secretion by about 70%. Both conc. and vol. of H ions will decrease.

Pharmacokinetics:
1) They are all well absorbed after oral dose.
2) Antacids decrease their absorption in about 10-20%

Uses
Cimetidine -  reduction of gastric secretion is beneficial, these are in main duodenal ulcer, benign gastric ulcer, stomach ulcer and reflux eosophagitis.

Rantidine -used as alternative for duodenal ulcer

Adverse effects:
headache, dizziness, constipation, diarrhoea, tiredness and muscular pain. 

Ciclopirox:Ciclopirox is a synthetic antifungal agent for topical dermatologic use.

Explore by Exams