NEET MDS Lessons
Pharmacology
Quinolone
Quinolones and fluoroquinolones form a group of broad-spectrum antibiotics. They are derived from nalidixic acid.
Fluoroquinolone antibiotics are highly potent and considered relatively safe.
MOA : Quinolones act by inhibiting the bacterial DNA gyrase enzyme. This way they inhibit nucleic acid synthesis and act bacteriocidically.
Drugs :Nalidixic acid, Ciprofloxacin , Levofloxacin, Norfloxacin ,Ofloxacin, Moxifloxacin , Trovafloxacin
ANTICHOLINERGIC DRUGS
Blocks the action of Ach on autonomic effectors.
Classification
Natural Alkaloids - Atropine. Hyoscine
Semi-synthetic deriuvatives:- Homatropine, Homatropine methylbromide, Atropine methonitrate.
Synthetic compounds
(a) Mydriatics - Cyclopentolate. Tropicamide.
(b) Antisecretory - Antispasmodics - Propantha1ine. Oxy-phenonium, Pirenzipine.
c) Antiparkinsonism- Benzotopine, Ethopropazine, Trihexyphenidyl, Procyclidine, Biperiden
Other drugs with anticholinergic properties • Tricyclic Antidepressants • Phenothiazines • Antihistaminics • Disopyramide
MUSCARINIC RECEPTORS SUBTYPES & ANTAGONISTS
• M 1 Antagonists – Pirenzepine, Telenzepine, dicyclomine, trihexyphenidyl
• M 2 Antagonists – Gallamine, methoctramine
• M 3 Antagonists – Darifenacin, solifenacin, oxybutynin, tolterodine
Pharmacological Actions
CNS - stimulation of medullary centres like vagal. respiratory. vasomotor and inhibition of vestibular excitation and has anti-motion sickness properties.
CVS - tachycardia.
Eye - mydriasis
Smooth muscles - relaxation of the muscles receiving parnsympathetic motor innervation.
Glands - decreased secretion of sweat and salivary glands
Body Temperature - is increased as there is stimulation of temperature regulating centre.
Respiratory System- Bronchodilatation & decrease in secretions. For COPD or Asthma - antimuscarinic drugs are effective
GIT - Pirenzepine & Telenzepine - decrease gastric secretion with lesser side effects.
Sedative-Hypnotic Drugs
Sedative drug is the drug that reduce anxiety (anxiolytic) and produce sedation and referred to as minor tranquillisers.
Hypnotic drug is the drug that induce sleep
Effects: make you sleepy; general CNS depressants
Uses: sedative-hypnotic (insomnia ), anxiolytic (anxiety, panic, obsessive compulsive, phobias), muscle relaxant (spasticity, dystonias), anticonvulsant (absence, status epilepticus, generalized seizures—rapid tolerance develops), others (pre-operative medication and endoscopic procedures, withdrawal from chronic use of ethanol or other CNS depressants)
1- For panic disorder alprazolam is effective.
2- muscle disorder: (reduction of muscle tone and coordination) diazepam is useful in treatment of skeletal muscle spasm e.g. muscle strain and spasticity of degenerative muscle diseases.
3-epilepsy: by increasing seizure threshold.
Clonazepam is useful in chronic treatment of epilepsy while diazepam is drug of choice in status epilepticus.
4-sleep disorder: Three BDZs are effective hypnotic agents; long acting flurazepam, intermediate acting temazepam and short
acting triazolam. They decrease the time taken to get to sleep They increase the total duration of sleep
5-control of alcohol withdrawals symptoms include diazepam, chlordiazepoxide, clorazepate and oxazepam.
6-in anesthesia: as preanesthetic amnesic agent (also in cardioversion) and as a component of balanced anesthesia
Flurazepam significantly reduce both sleep induction time and numbers of awakenings and increase duration of sleep and little rebound insomnia. It may cause daytime sedation.
Temazepam useful in patients who experience frequent awakening, peak sedative effect occur 2-3 hr. after an oral dose.
Triazolam used to induce sleep in recurring insomnia and in individuals have difficulty in going to sleep, tolerance develop within few days and withdrawals result in rebound insomnia therefore the drug used intermittently.
Drugs and their actions
1. Benzodiazepines: enhance the effect of gamma aminobutyric acid (GABA) at GABA receptors on chloride channels. This increases chloride channel conductance in the brain (GABA A A receptors are ion channel receptors).
2. Barbiturates: enhance the effect of GABA on the chloride channel but also increase chloride channel conductance independently of GABA, especially at high doses
3. Zolpidem and zaleplon: work in a similar manner to benzodiazepines but do so only at the benzodiazepine (BZ1) receptor type. (Both BZ1and BZ2 are located on chloride channels.)
4. Chloral hydrate: probably similar action to barbiturates.
5. Buspirone: partial agonist at a specific serotonin receptor (5-HT1A).
6. Other sedatives (e.g., mephenesin, meprobamate, methocarbamol, carisoprodol, cyclobenzaprine):
mechanisms not well-described. Several mechanisms may be involved.
7. Baclofen: stimulates GABA linked to the G protein, Gi , resulting in an increase in K + conductance and a decrease in Ca2+ conductance. (Other drugs mentioned above do not bind to the GABA B receptor.)
8. Antihistamines (e.g., diphenhydramine): block H1 histamine receptors. Doing so in the CNS leads to sedation.
9. Ethyl alcohol: its several actions include a likely effect on the chloride channel.
Etomidate -Intravenous Anesthetics
- A nonbarbiturate anesthetic used primarily to induce surgical anesthesia.
- It does not produce analgesia.
- Etomidate has minimal effect on the cardiovascular system and respiration during induction of anesthesia.
- Like the barbiturates, etomidate decreases cerebral blood flow, cerebral metabolic rate and intracranial pressure.
- No changes in hepatic, renal or hematologic function have been reported.
- Myoclonic muscle movements are relatively common.
- Postoperative nausea and vomiting are more common with etomidate than with barbiturates.
Pharmacokinetics
Pharmacokinetics is the way that the body deals with a drug - how that drug moves throughout the body, and how the body metabolizes and excretes it. The factors and processes involved in pharmacokinetics must be considered when choosing the most effective dose, route and schedule for a drug's use.
The four processes involved in pharmacokinetics are:
Absorption: The movement of a drug from its site of administration into the blood.
Several factors influence a drug's absorption:
- Rate of Dissolution: the faster a drug dissolves the faster it can be absorbed, and the faster the effects will begin.
- Surface Area: Larger surface area = faster absorption.
- Blood Flow: Greater blood flow at the site of drug administration = faster absorption.
- Lipid Solubility: High lipid solubility = faster absorption
- pH Partitioning: A drug that will ionize in the blood and not at the site of administration will absorb more quickly.
Distribution: The movement of drugs throughout the body.
Metabolism: (Biotransformation) The enzymatic alteration of drug structure.
Excretion: The removal of drugs from the body.
As a drug moves through the body, it must cross membranes. Some important factors to consider here then are:
Body's cells are surrounded by a bilayer of phospholipids (cell membrane).
There are three ways that a substance can cross cell membranes:
- Passing through channels and pores: only very small molecules can cross cell membranes this way.
- Transport Systems: Selective carriers that may or may not use ATP.
- Direct Penetration of the Cell Membrane:
Metabolism
Hepatic Drug-Metabolizing Enzymes: most drug metabolism in the liverperformed by the hepatic microsomal enzyme system.
Therapeutic Consequences of Drug Metabolism
- Accelerated Renal Drug Excretion: The most important consequence of drug metabolism is the promotion of renal drug excretion. Metabolism makes it possible for the kidney to excrete many drugs that it otherwise could not.
- Drug Inactivation
- Increased Therapeutic Action: Metabolism may increase the effectiveness of some drugs.
- Activation of Prodrugs: A prodrug is a compound that is inactive when administered and made active by conversion in the body.
- Increased or Decreased Toxicity
Factors that influence rate of metabolism:
- Age: Hepatic maturation doesn't occur until about a year old.
- Induction of Drug-Metabolizing Enzymes: Some drugs can cause the rate of metabolism to increase, leading to the need for an increased dosage. May also influence the rate of metabolism for other drugs taken at the same time, leading to a need for increased dosages of those drugs as well.
- First-Pass Effect: Hepatic inactivation of certain oral drugs. Avoided by parentaral administration of drugs that undergo rapid hepatic metabolism.
- Nutritional Status
- Competition between Drugs
Methyl salicylate
also known as oil of wintergreen, betula oil, methyl ester) is a natural product of many species of plants Structurally, it is methylated salicylic acid It is used as an ingredient in deep heating rubs