NEET MDS Lessons
General Surgery
Walsham’s Forceps
Walsham’s forceps are specialized surgical instruments used primarily in the manipulation and reduction of fractured nasal fragments. They are particularly useful in the management of nasal fractures, allowing for precise adjustment and stabilization of the bone fragments during the reduction process.
-
Design:
- Curved Blades: Walsham’s forceps feature two curved blades—one padded and one unpadded. The curvature of the blades allows for better access and manipulation of the nasal structures.
- Padded Blade: The padded blade is designed to provide a gentle grip on the external surface of the nasal bone and surrounding tissues, minimizing trauma during manipulation.
- Unpadded Blade: The unpadded blade is inserted into the nostril and is used to secure the internal aspect of the nasal bone and associated fragments.
-
Usage:
- Insertion: The unpadded blade is carefully passed up the nostril to reach the fractured nasal bone and the associated fragment of the frontal process of the maxilla.
- Securing Fragments: Once in position, the nasal bone and the associated fragment are secured between the padded blade externally and the unpadded blade internally.
- Manipulation: The surgeon can then manipulate the fragments into their correct anatomical position, ensuring proper alignment and stabilization.
-
Indications:
- Walsham’s forceps are indicated for use in cases of nasal fractures, particularly when there is displacement of the nasal bones or associated structures. They are commonly used in both emergency and elective settings for nasal fracture management.
-
Advantages:
- Precision: The design of the forceps allows for precise manipulation of the nasal fragments, which is crucial for achieving optimal alignment and aesthetic outcomes.
- Minimized Trauma: The padded blade helps to reduce trauma to the surrounding soft tissues, which can be a concern during the reduction of nasal fractures.
-
Postoperative Considerations:
- After manipulation and reduction of the nasal fragments, appropriate postoperative care is essential to monitor for complications such as swelling, infection, or malunion. Follow-up appointments may be necessary to assess healing and ensure that the nasal structure remains stable.
Tracheostomy
Tracheostomy is a surgical procedure that involves creating an opening in the trachea (windpipe) to facilitate breathing. This procedure is typically performed when there is a need for prolonged airway access, especially in cases where the upper airway is obstructed or compromised. The incision is usually made between the 2nd and 4th tracheal rings, as entry through the 1st ring can lead to complications such as tracheal stenosis.
Indications
Tracheostomy may be indicated in various clinical scenarios, including:
- Acute Upper Airway Obstruction: Conditions such as severe allergic reactions, infections (e.g., epiglottitis), or trauma that obstruct the airway.
- Major Surgery: Procedures involving the mouth, pharynx, or larynx that may compromise the airway.
- Prolonged Mechanical Ventilation: Patients requiring artificial ventilation for an extended period, such as those with respiratory failure.
- Unconscious Patients: Situations involving head injuries, tetanus, or bulbar poliomyelitis where airway protection is necessary.
Procedure
Technique
- Incision: A horizontal incision is made in the skin over the trachea, typically between the 2nd and 4th tracheal rings.
- Dissection: The subcutaneous tissue and muscles are dissected to expose the trachea.
- Tracheal Entry: An incision is made in the trachea, and a tracheostomy tube is inserted to maintain the airway.
Complications of Tracheostomy
Tracheostomy can be associated with several complications, which can be categorized into intraoperative, early postoperative, and late postoperative complications.
1. Intraoperative Complications
- Hemorrhage: Bleeding can occur during the procedure, particularly if major blood vessels are inadvertently injured.
- Injury to Paratracheal Structures:
- Carotid Artery: Injury can lead to significant hemorrhage and potential airway compromise.
- Recurrent Laryngeal Nerve: Damage can result in vocal cord paralysis and hoarseness.
- Esophagus: Injury can lead to tracheoesophageal fistula formation.
- Trachea: Improper technique can cause tracheal injury.
2. Early Postoperative Complications
- Apnea: Temporary cessation of breathing may occur, especially in patients with pre-existing respiratory issues.
- Hemorrhage: Postoperative bleeding can occur, requiring surgical intervention.
- Subcutaneous Emphysema: Air can escape into the subcutaneous tissue, leading to swelling and discomfort.
- Pneumomediastinum and Pneumothorax: Air can enter the mediastinum or pleural space, leading to respiratory distress.
- Infection: Risk of infection at the incision site or within the tracheostomy tube.
3. Late Postoperative Complications
- Difficult Decannulation: Challenges in removing the tracheostomy tube due to airway swelling or other factors.
- Tracheocutaneous Fistula: An abnormal connection between the trachea and the skin, which may require surgical repair.
- Tracheoesophageal Fistula: An abnormal connection between the trachea and esophagus, leading to aspiration and feeding difficulties.
- Tracheoinnominate Arterial Fistula: A rare but life-threatening complication where the trachea erodes into the innominate artery, resulting in severe hemorrhage.
- Tracheal Stenosis: Narrowing of the trachea due to scar tissue formation, which can lead to breathing difficulties.
Suture Materials
Sutures are essential in surgical procedures for wound closure and tissue approximation. Various types of sutures are available, each with unique properties, advantages, and applications. Below is a summary of some commonly used suture materials, including chromic catgut, polypropylene, polyglycolic acid, and polyamide (nylon).
1. Chromic Catgut
-
Description:
- Chromic catgut is a natural absorbable suture made from collagen derived from the submucosa of sheep intestines or the serosa of beef cattle intestines. It is over 99% pure collagen.
-
Absorption Process:
- The absorption of chromic catgut occurs through enzymatic digestion by proteolytic enzymes, which are derived from lysozymes contained within polymorphonuclear leukocytes (polymorphs) and macrophages.
-
Absorption Rate:
- The absorption rate depends on the size of the suture and whether it is plain or chromicized. Typically, absorption is completed within 60-120 days.
-
Applications:
- Commonly used in soft tissue approximation and ligation, particularly in areas where a temporary support is needed.
2. Polypropylene (Proline)
-
Description:
- Polypropylene is a synthetic monofilament suture made from a purified and dyed polymer.
-
Properties:
- It has an extremely high tensile strength, which it retains indefinitely after implantation. Polypropylene is non-biodegradable, meaning it does not break down in the body.
-
Applications:
- Ideal for use in situations where long-term support is required, such as in vascular surgery, hernia repairs, and other procedures where permanent sutures are beneficial.
3. Polyglycolic Acid
-
Description:
- Polyglycolic acid is a synthetic absorbable suture formed by linking glycolic acid monomers to create a polymer.
-
Properties:
- It is known for its predictable absorption rate and is commonly used in various surgical applications.
-
Applications:
- Frequently used in soft tissue approximation, including in gastrointestinal and gynecological surgeries, where absorbable sutures are preferred.
4. Polyamide (Nylon)
-
Description:
- Polyamide, commonly known as nylon, is a synthetic non-absorbable suture that is chemically extruded and generally available in monofilament form.
-
Properties:
- Nylon sutures have a low coefficient of friction, making passage through tissue easy. They also elicit minimal tissue reaction.
-
Applications:
- Used in a variety of surgical procedures, including skin closure, where a strong, durable suture is required.