NEET MDS Lessons
Public Health Dentistry
Classifications of epidemiologic research
1. Descriptive research —involves description, documentation, analysis, and interpretation of data to evaluate a current event or situation
a. incidence—number of new cases of a specific disease within a defined population over a period of time
b. Prevalence—number of persons in a population affected by a condition at any one time
c. Count—simplest sum of disease: number of cases of disease occurrence
d. Proportion—use of a count with the addition of a denominator to determine prevalence:
does not include a time dimension: useful to evaluate prevalence of caries in schoolchildren or tooth loss in adult populations
e. Rate— uses a standardized denominator and includes a time dimension. for example. the number of deaths of newborn infants within first year of life per 1000 births
2. Analytical research—determines the cause of disease or if a causal relationship exists between a factor and a disease
a. Prospective study—planning of the entire study is completed before data are collected and analyzed; population is followed through time to determine which members develop the disease; several hypotheses may be tested at on time
b. Cohort study—individuals are classified into groups according to whether or not they pos- sess a particular characteristic thought to be related to the condition of interest; observations occur over time to see who develops dis ease or condition
c. Retrospective study— decision to carry out an investigation using observations or data that have been collected in the past; data may be incomplete or in a manner not appropriate for study
d. Cross-sectional study— study of subgroups of individuals in a specific and limited time frame to identify either initially to describe current status or developmental changes in the overall group from the perspective of what is typical in each subgroup
e. Longitudinal study—investigation of the same group of individuals over an extended period of time to identify a change or devel opment in that group
3. Experimental research—used when the etiology of the disease is established and the researcher wishes to determine the effectiveness of altering some factor or factors; deliberate applying or withholding of the supposed cause of a condition and observing the result
Here are some common types of bias encountered in public health dentistry, along with their implications:
1. Selection Bias
Description: This occurs when the individuals included in a study are not representative of the larger population. This can happen due to non-random sampling methods or when certain groups are more likely to be included than others.
Implications:
- If a study on dental care access only includes patients from a specific clinic, the results may not be generalizable to the broader community.
- Selection bias can lead to over- or underestimation of the prevalence of dental diseases or the effectiveness of interventions.
2. Information Bias
Description: This type of bias arises from inaccuracies in the data collected, whether through measurement errors, misclassification, or recall bias.
Implications:
- Recall Bias: Patients may not accurately remember their dental history or behaviors, leading to incorrect data. For example, individuals may underestimate their sugar intake when reporting dietary habits.
- Misclassification: If dental conditions are misdiagnosed or misreported, it can skew the results of a study assessing the effectiveness of a treatment.
3. Observer Bias
Description: This occurs when the researcher’s expectations or knowledge influence the data collection or interpretation process.
Implications:
- If a dentist conducting a study on a new treatment is aware of which patients received the treatment versus a placebo, their assessment of outcomes may be biased.
- Observer bias can lead to inflated estimates of treatment effectiveness or misinterpretation of results.
4. Confounding Bias
Description: Confounding occurs when an outside variable is associated with both the exposure and the outcome, leading to a false association between them.
Implications:
- For example, if a study finds that individuals with poor oral hygiene have higher rates of cardiovascular disease, it may be confounded by lifestyle factors such as smoking or diet, which are related to both oral health and cardiovascular health.
- Failing to control for confounding variables can lead to misleading conclusions about the relationship between dental practices and health outcomes.
5. Publication Bias
Description: This bias occurs when studies with positive or significant results are more likely to be published than those with negative or inconclusive results.
Implications:
- If only studies showing the effectiveness of a new dental intervention are published, the overall understanding of its efficacy may be skewed.
- Publication bias can lead to an overestimation of the benefits of certain treatments or interventions in the literature.
6. Survivorship Bias
Description: This bias occurs when only those who have "survived" a particular process are considered, ignoring those who did not.
Implications:
- In dental research, if a study only includes patients who completed a treatment program, it may overlook those who dropped out due to adverse effects or lack of effectiveness, leading to an overly positive assessment of the treatment.
7. Attrition Bias
Description: This occurs when participants drop out of a study over time, and the reasons for their dropout are related to the treatment or outcome.
Implications:
- If patients with poor outcomes are more likely to drop out of a study evaluating a dental intervention, the final results may show a more favorable outcome than is truly the case.
Addressing Bias in Public Health Dentistry
To minimize bias in public health dentistry research, several strategies can be employed:
- Random Sampling: Use random sampling methods to ensure that the sample is representative of the population.
- Blinding: Implement blinding techniques to reduce observer bias, where researchers and participants are unaware of group assignments.
- Standardized Data Collection: Use standardized protocols for data collection to minimize information bias.
- Statistical Control: Employ statistical methods to control for confounding variables in the analysis.
- Transparency in Reporting: Encourage the publication of all research findings, regardless of the results, to combat publication bias.
Decayed-Missing-Filled Index ( DMF ) which was introduced by Klein, Palmer and Knutson in 1938 and modified by WHO:
1. DMF teeth index (DMFT) which measures the prevalence of dental caries/Teeth.
2. DMF surfaces index (DMFS) which measures the severity of dental caries.
The components are:
D component:
Used to describe (Decayed teeth) which include:
1. Carious tooth.
2. Filled tooth with recurrent decay.
3. Only the root are left.
4. Defect filling with caries.
5. Temporary filling.
6. Filled tooth surface with other surface decayed
M component:
Used to describe (Missing teeth due to caries) other cases should be excluded these are:
1. Tooth that extracted for reasons other than caries should be excluded, which include:
a- Orthodontic treatment.
b- Impaction.
c- Periodontal disease.
2. Unerupted teeth.
3. Congenitally missing.
4. Avulsion teeth due to trauma or accident.
F component:
Used to describe (Filled teeth due to caries).
Teeth were considered filled without decay when one or more permanent restorations were present and there was no secondary (recurrent) caries or other area of the tooth with primary caries.
A tooth with a crown placed because of previous decay was recorded in this category.
Teeth restored for reason other than dental caries should be excluded, which include:
1. Trauma (fracture).
2. Hypoplasia (cosmatic purposes).
3. Bridge abutment (retention).
4. Seal a root canal due to trauma.
5. Fissure sealant.
6. Preventive filling.
1. A tooth is considered to be erupted when just the cusp tip of the occlusal surface or incisor edge is exposed.
The excluded teeth in the DMF index are:
a. Supernumerary teeth.
b. The third molar according to Klein, Palmer and Knutson only.
2. Limitations - DMF index can be invalid in older adults or in children because index can overestimate caries record by cases other than dental caries.
1. DMFT: a. A tooth may have several restorations but it counted as one tooth, F. b. A tooth may have restoration on one surface and caries on the other, it should be counted as D . c. No tooth must be counted more than once, D M F or sound.
2. DMFS: Each tooth was recorded scored as 4 surfaces for anterior teeth and 5 surfaces for posterior teeth. a. Retained root was recorded as 4 D for anterior teeth, 5 D for posterior teeth. b. Missing tooth was recorded as 4 M for anterior teeth, 5 M for posterior teeth. c. Tooth with crown was recorded as 4 F for anterior teeth, 5 F for posterior teeth.
Calculation of DMFT \ DMFS:
1. For individual
DMF = D + M + F
2. For population
Minimum score = Zero
Primary teeth index:
1. dmft / dmfs Maximum scores: dmft = 20 , dmfs = 88
2. deft / defs, which was introduced by Gruebbel in 1944: d- decayed tooth. e- decayed tooth indicated for extraction . f- filled tooth.
3. dft / dfs: In which the missing teeth are ignored, because in children it is difficult to make sure whether the missing tooth was exfoliated or extracted due to caries or due to serial extraction.
Mixed dentition:
Each child is given a separate index, one for permanent teeth and another for primary teeth. Information from the dental caries indices can be derived to show the:
1. Number of persons affected by dental caries (%).
2. Number of surfaces and teeth with past and present dental caries (DMFT / dmft - DMFS / dmfs).
3. Number of teeth that need treatment, missing due to caries, and have been treated ( DT/dt, MT/mt, FT/f t).
Common tests in dental biostatics and applications
Dental biostatistics involves the application of statistical methods to the
study of dental medicine and oral health. It is used to analyze data, make
inferences, and support decision-making in various dental fields such as
epidemiology, clinical research, public health, and education. Some common tests
and their applications in dental biostatistics include:
1. T-test: This test is used to compare the means of two
independent groups. For example, it can be used to compare the pain levels
experienced by patients who receive two different types of local anesthetics
during dental procedures.
2. ANOVA (Analysis of Variance): This test is used to compare
the means of more than two independent groups. It is often used in dental
studies to evaluate the effectiveness of multiple treatments or to compare the
success rates of different dental materials.
3. Chi-Square Test: This is a non-parametric test used to
assess the relationship between categorical variables. In dental research, it
might be used to determine if there is an association between tooth decay and
socioeconomic status, or between the type of dental restoration and the
frequency of post-operative complications.
4. McNemar's Test: This is a statistical test used to analyze
paired nominal data, such as the change in the presence or absence of a
condition over time. In dentistry, it can be applied to assess the effectiveness
of a treatment by comparing the presence of dental caries in the same patients
before and after the treatment.
5. Kruskal-Wallis Test: This is another non-parametric test for
comparing more than two independent groups. It's useful when the data is not
normally distributed. For instance, it can be used to compare the effectiveness
of three different types of toothpaste in reducing plaque and gingivitis.
6. Mann-Whitney U Test: This test is used to compare the
medians of two independent groups when the data is not normally distributed. It
is often used in dental studies to compare the effectiveness of different
interventions, such as comparing the effectiveness of two mouthwashes in
reducing plaque and gingivitis.
7. Regression Analysis: This statistical method is used to
analyze the relationship between one dependent variable (e.g., tooth loss) and
one or more independent variables (e.g., age, oral hygiene habits, smoking
status). It helps to identify risk factors and predict outcomes.
8. Logistic Regression: This is used to model the relationship
between a binary outcome (e.g., presence or absence of dental caries) and one or
more independent variables. It is commonly used in dental epidemiology to assess
the risk factors for various oral diseases.
9. Cox Proportional Hazards Model: This is a survival analysis
technique used to estimate the time until an event occurs. In dentistry, it
might be used to determine the factors that influence the time until a dental
implant fails.
10. Kaplan-Meier Survival Analysis: This method is used to
estimate the probability of survival over time. It's commonly applied in dental
studies to evaluate the success rates of dental restorations or implants.
11. Fisher's Exact Test: This is used to test the significance
of a relationship between two categorical variables, especially when the sample
size is small. It might be used in a study examining the association between a
specific genetic mutation and the occurrence of oral cancer.
12. Spearman's Rank Correlation Coefficient: This is a
non-parametric measure of the correlation between two continuous or ordinal
variables. It could be used to assess the relationship between the severity of
periodontal disease and the patient's self-reported oral hygiene habits.
13. Cohen's kappa coefficient: This measures the agreement
between two or more raters who are categorizing items into ordered categories.
It is useful in calibration studies among dental professionals to assess the
consistency of their diagnostic or clinical evaluations.
14. Sample Size Calculation: Determining the appropriate sample
size is crucial for ensuring that dental studies are adequately powered to
detect significant differences. This is done using statistical formulas that
take into account the expected effect size, significance level, and power of the
study.
15. Confidence Intervals (CIs): CIs provide a range within
which the true population parameter is likely to lie, given the sample data.
They are commonly reported in dental studies to indicate the precision of the
results, for instance, the estimated difference in treatment efficacy between
two groups.
16. Statistical Significance vs. Clinical Significance: Dental
biostatistics helps differentiate between results that are statistically
significant (unlikely to have occurred by chance) and clinically significant
(large enough to have practical implications for patient care).
17. Meta-Analysis: This technique combines the results of
multiple studies to obtain a more precise estimate of the effectiveness of a
treatment or intervention. It is frequently used in dental research to summarize
the evidence for various treatments and to guide clinical practice.
These tests and applications are essential for designing, conducting, and
interpreting dental research studies. They help ensure that the results are
valid and reliable, and can be applied to improve the quality of oral health
care.
Terms
Health—state of complete physical, mental, and social well-being where basic human needs are met. not merely the absence of disease or infirmity; free from disease or pain
Public health — science and art of preventing disease. prolonging life, and promoting physical and mental health and efficiency through organized community efforts
1. Public health is concerned with the aggregate health of a group, a community, a state, a nation. or a group of nations
2. Public health is people’s health
3. Concerned with four broad areas
a. Lifestyle and behavior
b. The environment
c. Human biology
d. The organization of health programs and systems
Dental public health—science and art of preventing and controlling dental diseases and promoting dental health through organized community efforts; that form of dental practice that serves the community as a patient rather than the individual; concerned with the dental education of the public, with applied dental research, and with the administration of group dental care programs. as well as the prevention and control of dental diseases on a community basis
Community health—same as public health full range of health services, environmental and personal, including major activities such as health education of the public and the social context of life as it affects the community; efforts that are organized to promote and restore the health and quality of life of the people
Community dental health services are directed to ward developing, reinforcing, and enhancing the oral health status of people either as individuals or collectively as groups and communities
A test of significance in dentistry, as in other fields of research, is a
statistical method used to determine whether observed results are likely due to
chance or if they are statistically significant, meaning that they are reliable
and not random. It helps dentists and researchers make inferences about the
validity of their hypotheses.
The procedure for conducting a test of significance typically involves the
following steps:
1. Formulate a Null Hypothesis (H0) and an Alternative Hypothesis (H1):
The null hypothesis is a statement that assumes there is no significant
difference between groups or variables being studied, while the alternative
hypothesis suggests that there is a significant difference. For example, in a
dental study comparing two different toothpaste brands for their effectiveness
in reducing plaque, the null hypothesis might be that there is no difference in
plaque reduction between the two brands, while the alternative hypothesis would
be that one brand is more effective than the other.
2. Choose a significance level (α): This is the probability of
incorrectly rejecting the null hypothesis when it is true. Common significance
levels are 0.05 (5%) or 0.01 (1%).
3. Determine the sample size: Depending on the research
question, power analysis or literature review may help determine the appropriate
sample size needed to detect a clinically significant difference.
4. Collect data: Gather data from a sample of patients or
subjects under controlled conditions or from existing databases.
5. Calculate test statistics: This involves calculating a value
that represents the magnitude of the difference between the observed data and
what would be expected if the null hypothesis were true. Common test statistics
include the t-test, chi-square test, and ANOVA (Analysis of Variance).
6. Determine the p-value: The p-value is the probability of
obtaining the observed results or results more extreme than those observed if
the null hypothesis were true. It is calculated based on the test statistic and
the chosen significance level.
7. Compare the p-value to the significance level (α): If the
p-value is less than the significance level, the result is considered
statistically significant. If the p-value is greater than the significance
level, the result is not statistically significant, and the null hypothesis is
not rejected.
8. Interpret the results: Based on the p-value, make a decision
about the null hypothesis. If the p-value is less than the significance level,
reject the null hypothesis and accept the alternative hypothesis. If the p-value
is greater than the significance level, fail to reject the null hypothesis.
Here is a simplified example of a test of significance applied to dentistry:
Suppose you are comparing two different toothpaste brands to determine if there
is a significant difference in their effectiveness in reducing dental plaque.
You conduct a study with 50 participants who are randomly assigned to use either
brand A or brand B for a month. After a month, you measure the plaque levels of
all participants.
1. Null Hypothesis (H0): There is no significant difference in plaque reduction
between the two toothpaste brands.
2. Alternative Hypothesis (H1): There is a significant difference in plaque
reduction between the two toothpaste brands.
3. Significance Level (α): 0.05
Now, let's say you collected the data and found that the mean plaque reduction
for brand A was 25%, with a standard deviation of 5%, and for brand B, the mean
was 30%, with a standard deviation of 4%. You could use an independent samples
t-test to compare the two groups' means.
4. Calculate the t-statistic: t = (Mean of Brand B - Mean of Brand A) /
(Standard Error of the Difference)
5. Find the p-value associated with the calculated t-statistic. If the p-value
is less than 0.05, you reject the null hypothesis.
If the p-value is less than 0.05, you can conclude that there is a statistically
significant difference in plaque reduction between the two toothpaste brands,
supporting the alternative hypothesis that one brand is more effective than the
other. This could lead to further research or a change in dental hygiene
recommendations.
In dental applications, tests of significance are commonly used in studies
examining the effectiveness of different treatments, materials, and procedures.
For instance, they can be applied to compare the success rates of different
types of dental implants, the efficacy of various tooth whitening methods, or
the impact of oral hygiene interventions on periodontal health. Understanding
the statistical significance of these findings allows dentists to make
evidence-based decisions and recommendations for patient care.
Plaque index (PlI)
0 = No plaque in the gingival area.
1 = A thin film of plaque adhering to the free gingival margin and adjacent to the area of the tooth. The plaque is not readily visible, but is recognized by running a periodontal probe across the tooth surface.
2 = Moderate accumulation of plaque on the gingival margin, within the gingival pocket, and/or adjacent to the tooth surface, which can be observed visually.
3 = Abundance of soft matter within the gingival pocket and/or adjacent to the tooth surface.
Gingival index (GI)
0 = Healthy gingiva.
1= Mild inflammation: characterized by a slight change in color, edema. No bleeding observed on gentle probing.
2 = Moderate inflammation: characterized by redness, edema, and glazing. Bleeding on probing observed.
3 = Severe inflammation: characterized by marked redness and edema. Ulceration with a tendency toward spontaneous bleeding.
Modified gingival index (MGI)
0 = Absence of inflammation.
1 = Mild inflammation: characterized by a slight change in texture of any portion of, but not the entire marginal or papillary gingival unit.
2 = Mild inflammation: criteria as above, but involving the entire marginal or papillary gingival unit.
3 = Moderate inflammation: characterized by glazing, redness, edema, and/or hypertrophy of the marginal or papillary gingival unit.
4 = Severe inflammation: marked redness, edema, and/or hypertrophy of the marginal or papillary gingival unit, spontaneous bleeding, or ulceration.
Community periodontal index (CPI)
0 = Healthy gingiva.
1 = Bleeding observed after gentle probing or by visualization.
2 = Calculus felt during probing, but all of the black area of the probe remains visible (3.5-5.5 mm from ball tip).
3 = Pocket 4 or 5 mm (gingival margin situated on black area of probe, approximately 3.5-5.5 mm from the probe tip).
4 = Pocket > 6 mm (black area of probe is not visible).
Periodontal screening and recording (PSR)
0 = Healthy gingiva. Colored area of the probe remains visible, and no evidence of calculus or defective margins is detected.
1 = Colored area of the probe remains visible and no evidence of calculus or defective margins is detected, but bleeding on probing is noted.
2 = Colored area of the probe remains visible and calculus or defective margins is detected.
3 = Colored area of the probe remains partly visible (probe depth between 3.5-5.5 mm).
4 = Colored area of the probe completely disappears (probe depth > 5.5 mm).