NEET MDS Lessons
Prosthodontics
→ Following rules should be considered to classify partially edentulous
arches, based on Kennedy's classification.
Rule 1:
→ Classification should follow, rather than precede extraction, that might
alter the original classification.
Rule 2:
→ If 3rd molar is missing and not to be replaced, it is not
considered in classification.
Rule 3:
→ If the 3rd molar is present and is to be used as an abutment, it
is considered in classification.
Rule 4:
→ If second molar is missing and is not to be replaced, it is not
considered in classification.
Rule 5:
→ The most posterior edentulous area or areas always determine the
classification.
Rule 6:
→ Edentulous areas other than those, which determine the classification are
referred as modification spaces and are designated by their number.
Rule 7:
→ The extent of modification is not considered, only the number of additional
edentulous areas are taken into consideration (i.e. no. of teeth missing in
modification spaces are not considered, only no. of additional edentulous spaces
are considered).
Rule 8:
→ There can be no modification areas in class IV.
Porosity refers to the presence of voids or spaces within a solid material. In the context of prosthodontics, it specifically pertains to the presence of small cavities or air bubbles within a cast metal alloy. These defects can vary in size, distribution, and number, and are generally undesirable because they compromise the integrity and mechanical properties of the cast restoration.
Causes of Porosity Defects
Porosity in castings can arise from several factors, including:
1. Incomplete Burnout of the Investment Material: If the wax pattern used to create the mold is not completely removed by the investment material during the burnout process, gases can become trapped and leave pores as the metal cools and solidifies.
2. Trapped Air Bubbles: Air can become trapped in the investment mold during the mixing and pouring of the casting material. If not properly eliminated, these air bubbles can lead to porosity when the metal is cast.
3. Rapid Cooling: If the metal cools too quickly, the solidification process may not be complete, leaving small pockets of unsolidified metal that shrink and form pores as they solidify.
4. Contamination: The presence of contaminants in the metal alloy or investment material can also lead to porosity. These contaminants can react with the metal, forming gases that become trapped and create pores.
5. Insufficient Investment Compaction: If the investment material is not packed tightly around the wax pattern, small air spaces may remain, which can become pores when the metal is cast.
6. Gas Formation During Casting: Certain reactions between the metal alloy and the investment material or other substances in the casting environment can produce gases that become trapped in the metal.
7. Metal-Mold Interactions: Sometimes, the metal can react with the mold material, resulting in gas formation or the entrapment of mold material within the metal, which then appears as porosity.
8. Incorrect Spruing and Casting Design: Poorly designed sprues can lead to turbulent metal flow, causing air entrapment and subsequent porosity. Additionally, a complex casting design may result in areas where metal cannot flow properly, leading to incomplete filling of the mold and the formation of pores.
Consequences of Porosity Defects
The presence of porosity in a cast restoration can have several negative consequences:
1. Reduced Strength: The pores within the metal act as stress concentrators, weakening the material and making it more prone to fracture or breakage under functional loads.
2. Poor Fit: The pores can prevent the metal from fitting snugly against the prepared tooth, leading to a poor marginal fit and potential for recurrent decay or gum irritation.
3. Reduced Biocompatibility: The roughened surfaces and irregularities created by porosity can harbor plaque and bacteria, which can lead to peri-implant or periodontal disease.
4. Aesthetic Issues: In visible areas, porosity can be unsightly, affecting the overall appearance of the restoration.
5. Shortened Service Life: Prosthodontic restorations with porosity defects are more likely to fail prematurely, requiring earlier replacement.
6. Difficulty in Polishing and Finishing: The presence of porosity makes it challenging to achieve a smooth, polished finish, which can affect the comfort and longevity of the restoration.
Prevention and Management of Porosity
To minimize porosity defects in prosthodontic castings, the following steps can be taken:
1. Proper Investment Technique: Carefully follow the manufacturer's instructions for mixing and investing the wax pattern to ensure complete burnout and minimize trapped air bubbles.
2. Slow and Controlled Cooling: Allowing the metal to cool slowly and uniformly can help to reduce the formation of pores by allowing gases to escape more easily.
3. Pre-casting De-gassing: Some techniques involve degassing the investment mold before casting to remove any trapped gases.
4. Cleanliness: Ensure that the metal alloy and investment materials are free from contaminants.
5. Correct Casting Procedure: Use proper casting techniques to reduce turbulence and ensure a smooth flow of metal into the mold.
6. Appropriate Casting Design: Design the restoration with proper spruing and a simple, well-thought-out pattern to allow for even metal flow and minimize trapped air.
7. Proper Casting Conditions: Control the casting environment to reduce the likelihood of gas formation during the casting process.
8. Inspection and Quality Control: Carefully inspect the cast restoration for porosity under magnification and radiographs before it is delivered to the patient.
9. Repair or Replacement: When porosity defects are detected, they may be repairable through techniques such as metal condensation, spot welding, or adding metal with a pin connector. However, in some cases, the restoration may need to be recast to ensure optimal quality.
Arrangement of Teeth in Complete Dentures
The arrangement of teeth in complete dentures is a critical aspect of prosthodontics that affects both the function and aesthetics of the prosthesis. The following five principal factors must be considered when arranging teeth for complete dentures:
1. Position of the Arch
- Definition: The position of the arch refers to the spatial relationship of the maxillary and mandibular dental arches.
- Considerations:
- The relationship between the arches should be established based on the patient's occlusal plane and the anatomical landmarks of the residual ridges.
- Proper positioning ensures that the dentures fit well and function effectively during mastication and speech.
- The arch position also influences the overall balance and stability of the denture.
2. Contour of the Arch
- Definition: The contour of the arch refers to the shape and curvature of the dental arch.
- Considerations:
- The contour should mimic the natural curvature of the dental arch to provide a comfortable fit and proper occlusion.
- The arch contour affects the positioning of the teeth, ensuring that they align properly with the opposing arch.
- A well-contoured arch enhances the esthetics and function of the denture, allowing for effective chewing and speaking.
3. Orientation of the Plane
- Definition: The orientation of the plane refers to the angulation of the occlusal plane in relation to the horizontal and vertical planes.
- Considerations:
- The occlusal plane should be oriented to facilitate proper occlusion and function, taking into account the patient's facial features and anatomical landmarks.
- The orientation affects the alignment of the teeth and their relationship to the surrounding soft tissues.
- Proper orientation helps in achieving balanced occlusion and minimizes the risk of denture displacement during function.
4. Inclination of Occlusion
- Definition: The inclination of occlusion refers to the angulation of the occlusal surfaces of the teeth in relation to the vertical axis.
- Considerations:
- The inclination should be designed to allow for proper interdigitation of the teeth during occlusion.
- It influences the distribution of occlusal forces and the overall stability of the denture.
- The inclination of occlusion should be adjusted based on the patient's functional needs and the type of occlusion being utilized (e.g., balanced, monoplane, or lingualized).
5. Positioning for Esthetics
- Definition: Positioning for esthetics involves arranging the teeth in a way that enhances the patient's facial appearance and smile.
- Considerations:
- The arrangement should consider the patient's age, gender, and facial features to create a natural and pleasing appearance.
- The size, shape, and color of the teeth should be selected to match the patient's natural dentition and facial characteristics.
- Proper positioning for esthetics not only improves the appearance of the dentures but also boosts the patient's confidence and satisfaction with their prosthesis.
Kennedy's Classification is a system used in dentistry to categorize the
edentulous spaces (areas without teeth) in the mouth of a patient who is fully
or partially edentulous. This classification system helps in planning the
treatment, designing the dentures, and predicting the outcomes of denture
therapy. It was developed by Dr. Edward Kennedy in 1925 and is widely used by
dental professionals.
The classification is based on the relationship between the remaining teeth, the
residual alveolar ridge, and the movable tissues of the oral cavity. It is
particularly useful for patients who are wearing or will be wearing complete or
partial dentures.
There are four main classes of Kennedy's Classification:
1. Class I: In this class, the patient has a bilateral edentulous area with no
remaining teeth on either side of the arch. This means that the patient has a
full denture on the upper and lower jaws with no natural tooth support.
2. Class II: The patient has a unilateral edentulous area with natural teeth
remaining only on one side of the arch. This could be either the upper or lower
jaw. The edentulous side has a complete denture that is supported by the teeth
on the opposite side and the buccal (cheek) and lingual (tongue) tissues.
3. Class III: There is a unilateral edentulous area with natural teeth remaining
on both sides of the arch, but the edentulous area does not include the anterior
(front) teeth. This means the patient has a partial denture on one side of the
arch, with the rest of the teeth acting as support for the denture.
4. Class IV: The patient has a unilateral edentulous area with natural teeth
remaining only on the anterior region of the edentulous side. The posterior
(back) section of the same side is missing, and there may or may not be teeth on
the opposite side. This situation requires careful consideration for the design
of the partial denture to ensure stability and retention.
Each class is further divided into subcategories (A, B, and C) to account for
variations in the amount of remaining bone support and the presence or absence
of undercuts, which are areas where the bone curves inward and can affect the
stability of the denture.
- Class I (A, B, C): Variations in the amount of bone support and presence of
undercuts in the fully edentulous arches.
- Class II (A, B, C): Variations in the amount of bone support and presence of
undercuts in the edentulous area with natural teeth on the opposite side.
- Class III (A, B, C): Variations in the amount of bone support and presence of
undercuts in the edentulous area with natural teeth on the same side, but not in
the anterior region.
- Class IV (A, B, C): Variations in the amount of bone support and presence of
undercuts in the edentulous area with natural teeth remaining only in the
anterior region of the edentulous side.
Understanding a patient's Kennedy's Classification helps dentists and dental
technicians to create well-fitting and functional dentures, which are crucial
for the patient's comfort, speech, chewing ability, and overall oral health.
The clinical implications of an edentulous stomatognathic system are considered under the following factors:
(1) modi?cations in areas of support .
(2) functional and parafunctional considerations.
(3) changes in morphologic face height, and temporomandibular joint (TMJ).
(4) cosmetic changes and adaptive responses
Support mechanism for complete dentures
Mucosal support and masticatory loads
- The area of mucosa available to receive the load from complete dentures is limited when compared with the corresponding areas of support available for natural dentitions.
- The mean denture bearing area to be 22.96 cm2 in the edentulous maxillae and approximately 12.25 cm2 in an edentulous mandible
- In fact, any disturbance of the normal metabolic processes may lower the upper limit of mucosal tolerance and initiate in?ammation
Residual ridge
The residual ridge consists of denture-bearing mucosa, the submucosa and periosteum, and the underlying residual alveolar bone.
The alveolar bone supporting natural teeth receives tensile loads through a large area of periodontal ligament, whereas the edentulous residual ridge receives vertical, diagonal, and horizontal loads applied by a denture with a surface area much smaller than the total area of the periodontal ligaments of all the natural teeth that had been present.
There are two physical factors involved in denture retention that are under the control of the dentist
- The maximal extension of the denture base
- maximal intimate contact of the denture base and its basal seat
- The buccinator, the orbicularis oris, and the intrinsic and extrinsic muscles of the tongue are the key muscles that the dentist harnesses to achieve this objective by means of impression techniques.
- The design of the labial buccal and lingual polished surface of the denture and the form of the dental arch are considered in balancing the forces generated by the tongue and perioral musculature.
Function: mastication and other mandibular movements
Mastication consists of a rhythmic separation and apposition of the jaws and involves biophysical and biochemical processes, including the use of the lips, teeth, cheeks, tongue, palate, and all the oral structures to prepare food for swallowing.
- The maximal bite force in denture wearers is ?ve to six times less than that in dentulous individuals.
- The pronounced differences between persons with natural teeth and patients with complete dentures are conspicuous in this functional context:
(1) the mucosal mechanism of support as opposed to support by the periodontium ;
(2) the movements of the dentures during mastication;
(3) the progressive changes in maxillomandibular relations and the eventual migration of dentures
(4) the different physical stimuli to the sensor motor systems.
Parafunctional considerations
- Parafunctional habits involving repeated or sustained occlusion of the teeth can be harmful to the teeth or other components of the masticatory system.
- Teeth clenching is common and is a frequent cause of the complaint of soreness of the denture-bearing mucosa.
- In the denture wearer, parafunctional habits can cause additional loading on the denture-bearing tissues
Force generated during mastication and parafunction
Functional (Mastication)
Direction -> Mainly vertical
Duration and magnitude -> Intermittent and light diurnal only
Parafunction
Direction -> Frequently horizontalas well as vertical
Duration and magnitude -> Prolonged, possibly excessive Both diurnal and nocturnal
Changes in morphology (face height), occlusion, and the TMJs
The reduction of the residual ridges under complete dentures and the accompanying reduction in vertical dimension of occlusion tend to cause a reduction in the total face height and a resultant mandibular prognathism.
In complete denture wearers, the mean reduction in height of the mandibular residual alveolar ridge measured in the anterior region may be approximately four times greater than the mean reduction occurring in the maxillary residual alveolar process
Occlusion
- In complete denture prosthodontics, the position of planned maximum intercuspation of teeth is established to coincide with the patient’s centric relation.
-The coincidence of centric relation and centric occlusion is consequently referred to as centric relation occlusion (CRG).
- Centric relation at the established vertical dimension has potential for change. This change is brought about by alterations indenture-supporting tissues and facial height, as well as by morphological changes in the TMJs.
TMJ changes
impaired dental ef?ciency resulting from partial tooth loss and absence of or incorrect prosthodontic treatment can in?uence the outcome of temporomandibular disorders.
Aesthetic, behavioral, and adaptive response
Aesthetic changes associated with the edentulous state.
- Deepening of nasolabial groove
- Loss of labiodentals angle
- Narrowing of lips
- Increase in columellae philtral angle
- Prognathic appearance
Anatomy of Maxilary Edentulous Ridge
LIMITING STRUCTURES
A) Labial & buccal frenum
- Fibrous band covered by mucous membrane.
- A v-shaped notch (labial notch) should be provided very carefully which should be narrow but deep enough to avoid interference
- Buccal frenum has the attachment of following muscles; levator anguli
- It needs greater clearance on buccal flange of the denture (shallower and wider) than the labial frenum.
B) Labial & buccal vestibule (sulcus)
- Labial sulcus is bounded on one side by the teeth, gingiva and residual alveolar ridge and on the outer side by lips.
- Buccal sulcus extends from buccal frenum anteriorly to the hamular notch posteriorly.
- The size of the vestibule is dependant upon:
i) Contraction of buccinator muscle.
ii) Position of the mandible.
iii) Amount of bone loss in maxilla.
C) Hamular notch
It is depression situated between the maxillary tuberosity and the hamulus of the medial pterygoid plate. It is a soft area of loose connective tissue.
- it houses the disto-lateral termination of the denture.
- Aids in achieving posterior palatal seal.
- Overextension causes soreness.
- Underextension poor retention
D) Posterior palatal seal area (post-dam)
It is a soft tissue area at or beyond the junction of the hard and soft palates on which pressure within physiological limits can be applied by a complete denture to aid in its retention.
Extensions:
1. Anteriorly – Anterior vibrating line
2. Posteriorly – Posterior vibrating line
3. Laterally – 3-4 mm anterolateral to hamular notch
SUPPORTING STRUCTURES
A) Primary stress bearing area / Supporting area
1. Posterior part of the palate
2. Posterolateral part of the residual alveolar ridge
B) Secondary stress bearing area / Supporting area
1. The palatal rugae area
2. Maxillary tuberosity
RELIEF AREAS
A) Incisive papilla
- Midline structure situated behind the central incisors.
- It is an exit point of nasopalatine nerves and vessels.
- It should be relieved if not, the denture will compress the nerve or vessels and lead to necrosis of the distributing areas and paresthesia of anterior palate.
B) Mid-palatine raphe
- Extends from incisive papilla to distal end of hard palate.
- Median suture area covered by thin submucosa
- Relief is to be provided as it is supposed to be the most sensitive part of the palate to pressure
C) Crest of the residual alveolar ridge
D) Fovea palatinae
Few areas like the cuspid eminence , fovea palatinae and torus palatinus may be relieved according to condition required.
Complete Denture Occlusion
Complete denture occlusion is a critical aspect of prosthodontics, as it affects the function, stability, and comfort of the dentures. There are three primary types of occlusion used in complete dentures: Balanced Occlusion, Monoplane Occlusion, and Lingualized Occlusion. Each type has its own characteristics and applications.
Types of Complete Denture Occlusion
1. Balanced Occlusion
- Definition: Balanced occlusion is characterized by simultaneous contact of all opposing teeth in centric occlusion, providing stability and even distribution of occlusal forces.
- Key Features:
- Three-Point Contact: While a three-point contact (one anterior and two posterior) is a starting point, it is not sufficient for true balanced occlusion. Instead, there should be simultaneous contact of all teeth.
- Minimal Occlusal Balance: For minimal occlusal balance, there should be at least three points of contact on the occlusal plane. The more points of contact, the better the balance.
- Absence in Natural Dentition: Balanced occlusion is not typically found in natural dentition; it is a concept specifically applied to complete dentures to enhance stability during function.
- Importance: This type of occlusion is particularly important for patients with complete dentures, as it helps to minimize tipping and movement of the dentures during chewing and speaking.
2. Monoplane Occlusion
- Definition: Monoplane occlusion involves a flat occlusal plane where the occlusal surfaces of the teeth are arranged in a single plane.
- Key Features:
- Flat Occlusal Plane: The occlusal surfaces are designed to be flat, which simplifies the occlusion and reduces the complexity of the denture design.
- Limited Interference: This type of occlusion minimizes interferences during lateral and protrusive movements, making it easier for patients to adapt to their dentures.
- Applications: Monoplane occlusion is often used in cases where the residual ridge is severely resorbed or in patients with limited jaw movements.
3. Lingualized Occlusion
- Definition: Lingualized occlusion is characterized by the positioning of the maxillary posterior teeth in a way that they occlude with the mandibular posterior teeth, with the buccal cusps of the mandibular teeth being positioned more towards the buccal side.
- Key Features:
- Maxillary Teeth Positioning: The maxillary posterior teeth are positioned more towards the center of the arch, while the mandibular posterior teeth are positioned buccally.
- Functional Balance: This arrangement allows for better functional balance and stability during chewing, as the maxillary teeth provide support to the mandibular teeth.
- Advantages: Lingualized occlusion can enhance the esthetics and function of complete dentures, particularly in patients with a well-defined ridge.