Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Prosthodontics

Complete Denture Occlusion

Complete denture occlusion is a critical aspect of prosthodontics, as it affects the function, stability, and comfort of the dentures. There are three primary types of occlusion used in complete dentures: Balanced Occlusion, Monoplane Occlusion, and Lingualized Occlusion. Each type has its own characteristics and applications.

Types of Complete Denture Occlusion

1. Balanced Occlusion

  • Definition: Balanced occlusion is characterized by simultaneous contact of all opposing teeth in centric occlusion, providing stability and even distribution of occlusal forces.
  • Key Features:
    • Three-Point Contact: While a three-point contact (one anterior and two posterior) is a starting point, it is not sufficient for true balanced occlusion. Instead, there should be simultaneous contact of all teeth.
    • Minimal Occlusal Balance: For minimal occlusal balance, there should be at least three points of contact on the occlusal plane. The more points of contact, the better the balance.
    • Absence in Natural Dentition: Balanced occlusion is not typically found in natural dentition; it is a concept specifically applied to complete dentures to enhance stability during function.
  • Importance: This type of occlusion is particularly important for patients with complete dentures, as it helps to minimize tipping and movement of the dentures during chewing and speaking.

2. Monoplane Occlusion

  • Definition: Monoplane occlusion involves a flat occlusal plane where the occlusal surfaces of the teeth are arranged in a single plane.
  • Key Features:
    • Flat Occlusal Plane: The occlusal surfaces are designed to be flat, which simplifies the occlusion and reduces the complexity of the denture design.
    • Limited Interference: This type of occlusion minimizes interferences during lateral and protrusive movements, making it easier for patients to adapt to their dentures.
  • Applications: Monoplane occlusion is often used in cases where the residual ridge is severely resorbed or in patients with limited jaw movements.

3. Lingualized Occlusion

  • Definition: Lingualized occlusion is characterized by the positioning of the maxillary posterior teeth in a way that they occlude with the mandibular posterior teeth, with the buccal cusps of the mandibular teeth being positioned more towards the buccal side.
  • Key Features:
    • Maxillary Teeth Positioning: The maxillary posterior teeth are positioned more towards the center of the arch, while the mandibular posterior teeth are positioned buccally.
    • Functional Balance: This arrangement allows for better functional balance and stability during chewing, as the maxillary teeth provide support to the mandibular teeth.
  • Advantages: Lingualized occlusion can enhance the esthetics and function of complete dentures, particularly in patients with a well-defined ridge.

→ Following rules should be considered to classify partially edentulous arches, based on Kennedy's classification.

Rule 1:

→ Classification should follow, rather than precede extraction, that might alter the original classification.

Rule 2:

→ If 3rd molar is missing and not to be replaced, it is not considered in classification.

Rule 3:

→ If the 3rd molar is present and is to be used as an abutment, it is considered in classification.

Rule 4:

→ If second molar is missing and is not to be replaced, it is not considered in classification.

Rule 5:

→ The most posterior edentulous area or areas always determine the classification.

Rule 6:

→ Edentulous areas other than those, which determine the classification are referred as modification spaces and are designated by their number.

Rule 7:

→ The extent of modification is not considered, only the number of additional edentulous areas are taken into consideration (i.e. no. of teeth missing in modification spaces are not considered, only no. of additional edentulous spaces are considered).

Rule 8:

→ There can be no modification areas in class IV.

Articulators in Prosthodontics

An articulator is a mechanical device that simulates the temporomandibular joint (TMJ) and jaw movements, allowing for the attachment of maxillary and mandibular casts. This simulation is essential for diagnosing, planning, and fabricating dental prostheses, as it helps in understanding the relationship between the upper and lower jaws during functional movements.

Classification of Articulators

Class I: Simple Articulators

  • Description: These are simple holding instruments that can accept a static registration of the dental casts.
  • Characteristics:
    • Limited to hinge movements.
    • Do not allow for any dynamic or eccentric movements.
  • Examples:
    • Slab Articulator: A basic device that holds casts in a fixed position.
    • Hinge Joint: Mimics the hinge action of the jaw.
    • Barndor: A simple articulator with limited functionality.
    • Gysi Semplex: A basic articulator for static registrations.

Class II: Semi-Adjustable Articulators

  • Description: These instruments permit horizontal and vertical motion but do not orient the motion of the TMJ via face bow transfer.
  • Subcategories:
    • IIA: Eccentric motion is permitted based on average or arbitrary values.
      • Examples: Mean Value Articulator, Simplex.
    • IIB: Limited eccentric motion is possible based on theories of arbitrary motion.
      • Examples: Monson's Articulator, Hall's Articulator.
    • IIC: Limited eccentric motion is possible based on engraved records obtained from the patient.
      • Example: House Articulator.

Class III: Fully Adjustable Articulators

  • Description: These articulators permit horizontal and vertical positions and accept face bow transfer and protrusive registrations.
  • Subcategories:
    • IIIA: Accept a static protrusive registration and use equivalents for other types of motion.
      • Examples: Hanau Mate, Dentatus, Arcon.
    • IIIB: Accept static lateral registration in addition to protrusive and face bow transfer.
      • Examples: Ney, Teledyne, Hanau Universit series, Trubyte, Kinescope.

Class IV: Fully Adjustable Articulators with Dynamic Registration

  • Description: These articulators accept 3D dynamic registrations and utilize a face bow transfer.
  • Subcategories:
    • IVA: The condylar path registered cannot be modified.
      • Examples: TMJ Articulator, Stereograph.
    • IVB: They allow customization of the condylar path.
      • Examples: Stuart Instrument, Gnathoscope, Pantograph, Pantronic.

Key Points

  • Face Bow Transfer: Class I and Class II articulators do not accept face bow transfers, which are essential for accurately positioning the maxillary cast relative to the TMJ.
  • Dynamic vs. Static Registrations: Class III and IV articulators allow for more complex movements and registrations, which are crucial for creating functional and esthetic dental prostheses.

Finish lines are the marginal configurations at the interface between a restoration and the tooth structure that are intended to be refined and polished to a smooth contour. In prosthodontics, they are crucial for the proper adaptation and seating of restorations, as well as for maintaining the health of the surrounding soft and hard tissues. Finish lines can be classified in several ways, such as by their location, purpose, and the burs used to create them. Here's an overview:

1. Classification by Width:
a. Narrow Finish Lines: These are typically 0.5mm wide or less and are often used in areas where the restoration margin is tight against the tooth structure, such as with metal-ceramic restorations or in cases with minimal tooth preparation.
b. Moderate Finish Lines: These are 0.5-1.5mm wide and are commonly used for most types of restorations, providing adequate space for a good margin and seal.
c. Wide Finish Lines: These are 1.5mm wide or more and are often used in areas with less than ideal tooth preparation or when a wider margin is necessary for material manipulation or when there is a concern about the stability of the restoration.

2. Classification by Location and Application:
a. Shoulder Finish Line: This finish line is at a 90-degree angle to the tooth structure and is often used for metal-ceramic and all-ceramic restorations. It provides good support and can be easily visualized and finished.
b. Knife-Edge Finish Line: This is a very thin finish line that is beveled at an approximately 45-degree angle to the tooth structure. It is typically used for all-ceramic restorations and is designed to mimic the natural tooth contour, providing excellent esthetics.
c. Feather Edge Finish Line: Also known as a chamfer, this finish line is beveled at approximately 90-degrees to the tooth structure. It is used in situations where the tooth structure is not ideal for a shoulder margin, and it helps to distribute the forces evenly and reduce the risk of tooth fracture.
d. Butt-Joint Finish Line: This is when the restoration margin is placed directly against the tooth structure without any bevel. It is often used in the lingual areas of anterior teeth and in situations where there is minimal space for a margin.

3. Classification by Function:
a. Functional Finish Lines: These are placed where the restoration will be subject to significant occlusal or functional stresses. They are designed to enhance the durability of the restoration and are usually placed at or slightly below the height of the free gingival margin.
b. Esthetic Finish Lines: These are placed to achieve a high level of cosmetic appeal and are often located in the facial or incisal areas of anterior teeth. They are typically knife-edge margins that are highly polished.

Advantages and Disadvantages:
- Narrow finish lines can be more challenging to clean and may be less visible, potentially leading to better esthetics and less irritation of the surrounding tissues. However, they may also increase the risk of recurrent decay and are more difficult to achieve a good margin seal with.
- Moderate finish lines are easier to clean and provide a better margin seal, but may be more visible and can potentially lead to increased tooth sensitivity.
- Wide finish lines are more forgiving for marginal adaptation and are easier to clean, but they can be less esthetic and may require more tooth reduction.

Burs Used:
- The choice of bur for creating finish lines depends on the restoration material and the desired margin design. For example:
a. Diamond Burs: Typically used for creating finish lines on natural tooth structures, especially for knife-edge margins on ceramic restorations, due to their ability to produce a smooth and precise finish.
b. Carbide Burs: Often used for metal-ceramic restorations, as they are less likely to chip the ceramic material.
c. Zirconia-Specific Burs: Used for zirconia restorations to prevent chipping or fracture of the zirconia material.

When creating finish lines, the dentist must consider the patient's oral health, the type of restoration, the location in the mouth, and the desired functional and esthetic outcomes. The correct selection and preparation of the finish line are essential for the longevity and success of the restoration.

Understanding the anatomical considerations for upper (maxillary) and lower (mandibular) dentures is crucial for successful denture fabrication and fitting. Proper knowledge of stress-bearing areas, retentive areas, and relief areas helps in achieving optimal retention, stability, and comfort for the patient.

Maxilla

Stress Bearing Areas

  • Primary Stress Bearing Area:

    • Residual Alveolar Ridge: The primary area where the forces of mastication are transmitted.
  • Secondary Stress Bearing Areas:

    • Rugae: The folds in the anterior hard palate that provide additional support.
    • Anterior Hard Palate: The bony part of the roof of the mouth.
    • Maxillary Tuberosity: The rounded area at the back of the maxilla that aids in support.
  • Tertiary Stress Bearing Area and Secondary Retentive Area:

    • Posteriolateral Part of Hard Palate: Provides additional support and retention.

Relieving Areas

  • Incisive Papilla: A small elevation located behind the maxillary central incisors; important to relieve pressure.
  • Mid Palatine Raphe: The midline ridge of the hard palate; should be relieved to avoid discomfort.
  • Cuspid Eminence: The bony prominence associated with the canine teeth; requires relief.
  • Fovea Palatine: Small depressions located posterior to the hard palate; should be considered for relief.

Primary Retentive Area

  • Posterior Palatal Seal Area: The area at the posterior border of the maxillary denture that aids in retention by creating a seal.

Mandible

Stress Bearing Areas

  • Primary Stress Bearing Area:

    • Buccal Shelf Area: The area between the residual ridge and the buccal vestibule; provides significant support.
  • Secondary Stress Bearing Area:

    • Slopes of Edentulous Ridge: The inclined surfaces of the residual ridge that can bear some stress.

Retentive Areas

  • Primary Retentive and Primary Peripheral Seal Area:

    • Retromolar Pad: The area behind the last molar that provides retention and support.
  • Secondary Peripheral Seal Area:

    • Anterior Lingual Border: The area along the anterior border of the lingual vestibule that aids in retention.

Relief Areas

  • Crest of Residual Ridge: The top of the ridge should be relieved to prevent pressure sores.
  • Mental Foramen: The opening for the mental nerve; should be avoided to prevent discomfort.
  • Mylohyoid Ridge: The bony ridge along the mandible that may require relief.

Posterior Palatal Seal (PPS)

The posterior palatal seal is critical for ensuring a complete seal, which enhances the retention of the maxillary denture.

Functions of the Posterior Palatal Seal

  • Displacement of Soft Tissues: Slightly displaces the soft tissues at the distal end of the denture to ensure a complete seal.
  • Prevention of Food Ingress: Prevents food and saliva from entering beneath the denture base.
  • Control of Impression Material: Prevents excess impression material from running down the patient's throat.

Vibrating Lines

  • Vibrating Line: An imaginary line that passes from one pterygomaxillary notch to the other, located 2 mm in front of the fovea palatine, always on the soft palate. The distal end of the denture should be positioned 1-2 mm posterior to this line.

  • Anterior Vibrating Line:

    • Located at the junction between the immovable tissues of the hard palate and the slightly movable tissues of the soft palate.
    • Identified by asking the patient to say "ah" in short vigorous bursts or performing the Valsalva maneuver.
    • The line has a cupid bow shape.
  • Posterior Vibrating Line:

    • Located at the junction of the soft palate that shows limited movement and the soft palate that shows marked movement.

The mental attitude of patients towards complete dentures plays a significant role in the success of their treatment. Understanding these attitudes can help dental professionals tailor their approach to meet the needs and expectations of their patients. Here are the four primary mental attitudes that patients may exhibit:

1. Philosophical (Ideal Attitude)

  • Characteristics:
    • Accepts the dentist's judgment without question.
    • Exhibits a rational, sensible, calm, and composed disposition.
    • Open to discussing treatment options and understands the importance of oral health.
  • Implications for Treatment:
    • This type of patient is likely to follow the dentist's recommendations and cooperate throughout the treatment process.
    • They are more likely to have realistic expectations and be satisfied with the outcomes.

2. Indifferent

  • Characteristics:
    • Shows little concern for their oral health.
    • Seeks treatment primarily due to pressure from family or friends.
    • Requires additional time and education to understand the importance of dental care.
    • Their attitude can be discouraging to dentists, as they may not fully engage in the treatment process.
  • Implications for Treatment:
    • Dentists may need to invest extra effort in educating these patients about the benefits of complete dentures and the importance of oral health.
    • Building rapport and trust is essential to encourage a more proactive attitude towards treatment.

3. Critical/Exacting

  • Characteristics:
    • Has previously had multiple sets of complete dentures and tends to find fault with everything.
    • Often has high expectations and may be overly critical of the treatment process.
    • May require medical consultation due to previous experiences or health concerns.
  • Implications for Treatment:
    • Dentists should be prepared to address specific concerns and provide detailed explanations about the treatment plan.
    • It is important to manage expectations and ensure that the patient understands the limitations and possibilities of denture treatment.

4. Skeptical/Hysterical

  • Characteristics:
    • Has had negative experiences with previous treatments, leading to doubt and skepticism about the current treatment.
    • Often presents with poor oral health, resorbed ridges, and other unfavorable conditions.
    • May exhibit anxiety or hysteria regarding dental procedures.
  • Implications for Treatment:
    • Building trust and confidence is crucial for these patients. Dentists should take the time to listen to their concerns and provide reassurance.
    • A gentle and empathetic approach is necessary to help alleviate fears and encourage cooperation.
    • It may be beneficial to involve them in the decision-making process to empower them and reduce anxiety.

The clinical implications of an edentulous stomatognathic system are considered under the following factors:

(1) modi?cations in areas of support .
(2) functional and parafunctional considerations.
(3) changes in morphologic face height, and temporomandibular joint (TMJ).
(4) cosmetic changes and adaptive responses

Support mechanism for complete dentures

Mucosal support and masticatory loads

- The area of mucosa available to receive the load from complete dentures is limited when compared with the corresponding areas of support available for natural dentitions.

- The mean denture bearing area to be 22.96 cm2 in the edentulous maxillae and approximately 12.25 cm2 in an edentulous mandible

- In fact, any disturbance of the normal metabolic processes may lower the upper limit of mucosal tolerance and initiate in?ammation

Residual ridge

The residual ridge consists of denture-bearing mucosa, the submucosa and periosteum, and the underlying residual alveolar bone.

The alveolar bone supporting natural teeth receives tensile loads through a large area of periodontal ligament, whereas the edentulous residual ridge receives vertical, diagonal, and horizontal loads applied by a denture with a surface area much smaller than the total area of the periodontal ligaments of all the natural teeth that had been present.

There are two physical factors involved in denture retention that are under the control of the dentist

- The maximal extension of the denture base
- maximal intimate contact of the denture base and its basal seat

 - The buccinator, the orbicularis oris, and the intrinsic and extrinsic muscles of the tongue are the key muscles that the dentist harnesses to achieve this objective by means of impression techniques.
 - The design of the labial buccal and lingual polished surface of the denture and the form of the dental arch are considered in balancing the forces generated by the tongue and perioral musculature.

Function: mastication and other mandibular movements

Mastication consists of a rhythmic separation and apposition of the jaws and involves biophysical and biochemical processes, including the use of the lips, teeth, cheeks, tongue, palate, and all the oral structures to prepare food for swallowing.

- The maximal bite force in denture wearers is ?ve to six times less than that in dentulous individuals.

- The pronounced differences between persons with natural teeth and patients with complete dentures are conspicuous in this functional context:

(1) the mucosal mechanism of support as opposed to support by the periodontium ;

(2) the movements of the dentures during mastication;

(3) the progressive changes in maxillomandibular relations and the eventual migration of dentures

(4) the different physical stimuli to the sensor motor systems.

Parafunctional considerations

- Parafunctional habits involving repeated or sustained occlusion of the teeth can be harmful to the teeth or other components of the masticatory system.

- Teeth clenching is common and is a frequent cause of the complaint of soreness of the denture-bearing mucosa.

- In the denture wearer, parafunctional habits can cause additional loading on the denture-bearing tissues

Force generated during mastication and parafunction

Functional (Mastication)

Direction -> Mainly vertical

Duration and magnitude -> Intermittent and light diurnal only

Parafunction

Direction -> Frequently horizontalas well as vertical

Duration and magnitude -> Prolonged, possibly excessive Both diurnal and nocturnal

Changes in morphology (face height), occlusion, and the TMJs

The reduction of the residual ridges under complete dentures and the accompanying reduction in vertical dimension of occlusion tend to cause a reduction in the total face height and a resultant mandibular prognathism.

In complete denture wearers, the mean reduction in height of the mandibular residual alveolar ridge measured in the anterior region may be approximately four times greater than the mean reduction occurring in the maxillary residual alveolar process

Occlusion

- In complete denture prosthodontics, the position of planned maximum intercuspation of teeth is established to coincide with the patient’s centric relation.

-The coincidence of centric relation and centric occlusion is consequently referred to as centric relation occlusion (CRG).

- Centric relation at the established vertical dimension has potential for change. This change is brought about by alterations indenture-supporting tissues and facial height, as well as by morphological changes in the TMJs.

TMJ changes

impaired dental ef?ciency resulting from partial tooth loss and absence of or incorrect prosthodontic treatment can in?uence the outcome of temporomandibular disorders.

Aesthetic, behavioral, and adaptive response

Aesthetic changes associated with the edentulous state.

- Deepening of nasolabial groove

- Loss of labiodentals angle

- Narrowing of lips

- Increase in columellae philtral angle

-  Prognathic appearance

Explore by Exams