NEET MDS Lessons
Prosthodontics
Applegate's Classification is a system used to categorize edentulous
(toothless) arches in preparation for denture construction. The classification
is based on the amount and quality of the remaining alveolar ridge, the
relationship of the ridge to the residual ridges, and the presence of undercuts.
The system is primarily used in the context of complete denture prosthodontics
to determine the best approach for achieving retention, stability, and support
for the dentures.
Applegate's Classification for edentulous arches:
1. Class I: The alveolar ridge has a favorable arch form and sufficient height
and width to provide adequate support for a complete denture without the need
for extensive modifications. This is the ideal scenario for denture
construction.
2. Class II: The alveolar ridge has a favorable arch form but lacks the
necessary height or width to provide adequate support. This may require the use
of denture modifications such as flanges to enhance retention and support.
3. Class III: The ridge lacks both height and width, and there may be undercuts
or excessive resorption. In this case, additional procedures such as ridge
augmentation or the use of implants might be necessary to improve the foundation
for the denture.
4. Class IV: The ridge has an unfavorable arch form, often with significant
resorption, and may require extensive surgical procedures or adjuncts like
implants to achieve a functional and stable denture.
5. Class V: This is the most severe classification where the patient has no
residual alveolar ridge, possibly due to severe resorption, trauma, or surgical
removal. In such cases, the creation of a functional and stable denture may be
highly challenging and might necessitate advanced surgical procedures and/or the
use of alternative prosthetic options like over-dentures with implant support.
It's important to note that this classification is a guide, and individual
patient cases may present with a combination of features from different classes
or may require customized treatment plans based on unique anatomical and
functional requirements.
Porosity refers to the presence of voids or spaces within a solid material. In the context of prosthodontics, it specifically pertains to the presence of small cavities or air bubbles within a cast metal alloy. These defects can vary in size, distribution, and number, and are generally undesirable because they compromise the integrity and mechanical properties of the cast restoration.
Causes of Porosity Defects
Porosity in castings can arise from several factors, including:
1. Incomplete Burnout of the Investment Material: If the wax pattern used to create the mold is not completely removed by the investment material during the burnout process, gases can become trapped and leave pores as the metal cools and solidifies.
2. Trapped Air Bubbles: Air can become trapped in the investment mold during the mixing and pouring of the casting material. If not properly eliminated, these air bubbles can lead to porosity when the metal is cast.
3. Rapid Cooling: If the metal cools too quickly, the solidification process may not be complete, leaving small pockets of unsolidified metal that shrink and form pores as they solidify.
4. Contamination: The presence of contaminants in the metal alloy or investment material can also lead to porosity. These contaminants can react with the metal, forming gases that become trapped and create pores.
5. Insufficient Investment Compaction: If the investment material is not packed tightly around the wax pattern, small air spaces may remain, which can become pores when the metal is cast.
6. Gas Formation During Casting: Certain reactions between the metal alloy and the investment material or other substances in the casting environment can produce gases that become trapped in the metal.
7. Metal-Mold Interactions: Sometimes, the metal can react with the mold material, resulting in gas formation or the entrapment of mold material within the metal, which then appears as porosity.
8. Incorrect Spruing and Casting Design: Poorly designed sprues can lead to turbulent metal flow, causing air entrapment and subsequent porosity. Additionally, a complex casting design may result in areas where metal cannot flow properly, leading to incomplete filling of the mold and the formation of pores.
Consequences of Porosity Defects
The presence of porosity in a cast restoration can have several negative consequences:
1. Reduced Strength: The pores within the metal act as stress concentrators, weakening the material and making it more prone to fracture or breakage under functional loads.
2. Poor Fit: The pores can prevent the metal from fitting snugly against the prepared tooth, leading to a poor marginal fit and potential for recurrent decay or gum irritation.
3. Reduced Biocompatibility: The roughened surfaces and irregularities created by porosity can harbor plaque and bacteria, which can lead to peri-implant or periodontal disease.
4. Aesthetic Issues: In visible areas, porosity can be unsightly, affecting the overall appearance of the restoration.
5. Shortened Service Life: Prosthodontic restorations with porosity defects are more likely to fail prematurely, requiring earlier replacement.
6. Difficulty in Polishing and Finishing: The presence of porosity makes it challenging to achieve a smooth, polished finish, which can affect the comfort and longevity of the restoration.
Prevention and Management of Porosity
To minimize porosity defects in prosthodontic castings, the following steps can be taken:
1. Proper Investment Technique: Carefully follow the manufacturer's instructions for mixing and investing the wax pattern to ensure complete burnout and minimize trapped air bubbles.
2. Slow and Controlled Cooling: Allowing the metal to cool slowly and uniformly can help to reduce the formation of pores by allowing gases to escape more easily.
3. Pre-casting De-gassing: Some techniques involve degassing the investment mold before casting to remove any trapped gases.
4. Cleanliness: Ensure that the metal alloy and investment materials are free from contaminants.
5. Correct Casting Procedure: Use proper casting techniques to reduce turbulence and ensure a smooth flow of metal into the mold.
6. Appropriate Casting Design: Design the restoration with proper spruing and a simple, well-thought-out pattern to allow for even metal flow and minimize trapped air.
7. Proper Casting Conditions: Control the casting environment to reduce the likelihood of gas formation during the casting process.
8. Inspection and Quality Control: Carefully inspect the cast restoration for porosity under magnification and radiographs before it is delivered to the patient.
9. Repair or Replacement: When porosity defects are detected, they may be repairable through techniques such as metal condensation, spot welding, or adding metal with a pin connector. However, in some cases, the restoration may need to be recast to ensure optimal quality.
Impression making is a critical step in prosthodontics and orthodontics, as it captures the details of the oral cavity for the fabrication of dental prostheses. There are several techniques for making impressions, each with its own principles and applications. Here, we will discuss three primary impression-making techniques: Mucostatic, Mucocompressive, and Selective Pressure Impression Techniques.
1. Mucostatic or Passive Impression Technique
- Proposed by: Richardson and Henry Page
- Materials Used: Plaster of Paris and Alginate
- Key Features:
- Relaxed Condition: Records the oral mucous membrane and jaws in a normal, relaxed condition.
- Tray Design: Utilizes an oversized tray to accommodate the relaxed tissues.
- Tissue Contact: Achieves intimate contact of the tissues with the denture base, which enhances stability.
- Peripheral Seal: This technique has a poor peripheral seal, which can affect retention.
- Outcome: The resulting denture will have good stability but poor retention due to the lack of a proper seal.
2. Mucocompressive Impression Technique
- Proposed by: Carole Jones
- Materials Used: Impression compound and Zinc Oxide Eugenol (ZoE)
- Key Features:
- Functional Recording: Records the oral tissues in a functional and displaced form, capturing the active state of the tissues.
- Retention: Provides good retention due to the compression of the tissues during the impression process.
- Displacement Issues: Dentures made using this technique may tend to get displaced due to tissue rebound when the tissues return to their resting state after the impression is taken.
3. Selective Pressure Impression Technique
- Proposed by: Boucher
- Materials Used: Special tray with Zinc Oxide Eugenol (ZoE) wash impression
- Key Features:
- Stress Distribution: Loads acting on the denture are transmitted to the stress-bearing areas of the oral tissues.
- Tray Design: A special tray is designed such that the tissues contacted by the tray are recorded under pressure, while the tissues not contacted by the tray are recorded in a state of rest.
- Balanced Recording: This technique allows for a more balanced impression, capturing both the functional and relaxed states of the oral tissues.
Articulators in Prosthodontics
An articulator is a mechanical device that simulates the temporomandibular joint (TMJ) and jaw movements, allowing for the attachment of maxillary and mandibular casts. This simulation is essential for diagnosing, planning, and fabricating dental prostheses, as it helps in understanding the relationship between the upper and lower jaws during functional movements.
Classification of Articulators
Class I: Simple Articulators
- Description: These are simple holding instruments that can accept a static registration of the dental casts.
- Characteristics:
- Limited to hinge movements.
- Do not allow for any dynamic or eccentric movements.
- Examples:
- Slab Articulator: A basic device that holds casts in a fixed position.
- Hinge Joint: Mimics the hinge action of the jaw.
- Barndor: A simple articulator with limited functionality.
- Gysi Semplex: A basic articulator for static registrations.
Class II: Semi-Adjustable Articulators
- Description: These instruments permit horizontal and vertical motion but do not orient the motion of the TMJ via face bow transfer.
- Subcategories:
- IIA: Eccentric motion is permitted based on average
or arbitrary values.
- Examples: Mean Value Articulator, Simplex.
- IIB: Limited eccentric motion is possible based on
theories of arbitrary motion.
- Examples: Monson's Articulator, Hall's Articulator.
- IIC: Limited eccentric motion is possible based on
engraved records obtained from the patient.
- Example: House Articulator.
- IIA: Eccentric motion is permitted based on average
or arbitrary values.
Class III: Fully Adjustable Articulators
- Description: These articulators permit horizontal and vertical positions and accept face bow transfer and protrusive registrations.
- Subcategories:
- IIIA: Accept a static protrusive registration and
use equivalents for other types of motion.
- Examples: Hanau Mate, Dentatus, Arcon.
- IIIB: Accept static lateral registration in
addition to protrusive and face bow transfer.
- Examples: Ney, Teledyne, Hanau Universit series, Trubyte, Kinescope.
- IIIA: Accept a static protrusive registration and
use equivalents for other types of motion.
Class IV: Fully Adjustable Articulators with Dynamic Registration
- Description: These articulators accept 3D dynamic registrations and utilize a face bow transfer.
- Subcategories:
- IVA: The condylar path registered cannot be
modified.
- Examples: TMJ Articulator, Stereograph.
- IVB: They allow customization of the condylar path.
- Examples: Stuart Instrument, Gnathoscope, Pantograph, Pantronic.
- IVA: The condylar path registered cannot be
modified.
Key Points
- Face Bow Transfer: Class I and Class II articulators do not accept face bow transfers, which are essential for accurately positioning the maxillary cast relative to the TMJ.
- Dynamic vs. Static Registrations: Class III and IV articulators allow for more complex movements and registrations, which are crucial for creating functional and esthetic dental prostheses.
The mental attitude of patients towards complete dentures plays a significant role in the success of their treatment. Understanding these attitudes can help dental professionals tailor their approach to meet the needs and expectations of their patients. Here are the four primary mental attitudes that patients may exhibit:
1. Philosophical (Ideal Attitude)
- Characteristics:
- Accepts the dentist's judgment without question.
- Exhibits a rational, sensible, calm, and composed disposition.
- Open to discussing treatment options and understands the importance of oral health.
- Implications for Treatment:
- This type of patient is likely to follow the dentist's recommendations and cooperate throughout the treatment process.
- They are more likely to have realistic expectations and be satisfied with the outcomes.
2. Indifferent
- Characteristics:
- Shows little concern for their oral health.
- Seeks treatment primarily due to pressure from family or friends.
- Requires additional time and education to understand the importance of dental care.
- Their attitude can be discouraging to dentists, as they may not fully engage in the treatment process.
- Implications for Treatment:
- Dentists may need to invest extra effort in educating these patients about the benefits of complete dentures and the importance of oral health.
- Building rapport and trust is essential to encourage a more proactive attitude towards treatment.
3. Critical/Exacting
- Characteristics:
- Has previously had multiple sets of complete dentures and tends to find fault with everything.
- Often has high expectations and may be overly critical of the treatment process.
- May require medical consultation due to previous experiences or health concerns.
- Implications for Treatment:
- Dentists should be prepared to address specific concerns and provide detailed explanations about the treatment plan.
- It is important to manage expectations and ensure that the patient understands the limitations and possibilities of denture treatment.
4. Skeptical/Hysterical
- Characteristics:
- Has had negative experiences with previous treatments, leading to doubt and skepticism about the current treatment.
- Often presents with poor oral health, resorbed ridges, and other unfavorable conditions.
- May exhibit anxiety or hysteria regarding dental procedures.
- Implications for Treatment:
- Building trust and confidence is crucial for these patients. Dentists should take the time to listen to their concerns and provide reassurance.
- A gentle and empathetic approach is necessary to help alleviate fears and encourage cooperation.
- It may be beneficial to involve them in the decision-making process to empower them and reduce anxiety.
→ Following rules should be considered to classify partially edentulous
arches, based on Kennedy's classification.
Rule 1:
→ Classification should follow, rather than precede extraction, that might
alter the original classification.
Rule 2:
→ If 3rd molar is missing and not to be replaced, it is not
considered in classification.
Rule 3:
→ If the 3rd molar is present and is to be used as an abutment, it
is considered in classification.
Rule 4:
→ If second molar is missing and is not to be replaced, it is not
considered in classification.
Rule 5:
→ The most posterior edentulous area or areas always determine the
classification.
Rule 6:
→ Edentulous areas other than those, which determine the classification are
referred as modification spaces and are designated by their number.
Rule 7:
→ The extent of modification is not considered, only the number of additional
edentulous areas are taken into consideration (i.e. no. of teeth missing in
modification spaces are not considered, only no. of additional edentulous spaces
are considered).
Rule 8:
→ There can be no modification areas in class IV.
Understanding the anatomical considerations for upper (maxillary) and lower (mandibular) dentures is crucial for successful denture fabrication and fitting. Proper knowledge of stress-bearing areas, retentive areas, and relief areas helps in achieving optimal retention, stability, and comfort for the patient.
Maxilla
Stress Bearing Areas
-
Primary Stress Bearing Area:
- Residual Alveolar Ridge: The primary area where the forces of mastication are transmitted.
-
Secondary Stress Bearing Areas:
- Rugae: The folds in the anterior hard palate that provide additional support.
- Anterior Hard Palate: The bony part of the roof of the mouth.
- Maxillary Tuberosity: The rounded area at the back of the maxilla that aids in support.
-
Tertiary Stress Bearing Area and Secondary Retentive Area:
- Posteriolateral Part of Hard Palate: Provides additional support and retention.
Relieving Areas
- Incisive Papilla: A small elevation located behind the maxillary central incisors; important to relieve pressure.
- Mid Palatine Raphe: The midline ridge of the hard palate; should be relieved to avoid discomfort.
- Cuspid Eminence: The bony prominence associated with the canine teeth; requires relief.
- Fovea Palatine: Small depressions located posterior to the hard palate; should be considered for relief.
Primary Retentive Area
- Posterior Palatal Seal Area: The area at the posterior border of the maxillary denture that aids in retention by creating a seal.
Mandible
Stress Bearing Areas
-
Primary Stress Bearing Area:
- Buccal Shelf Area: The area between the residual ridge and the buccal vestibule; provides significant support.
-
Secondary Stress Bearing Area:
- Slopes of Edentulous Ridge: The inclined surfaces of the residual ridge that can bear some stress.
Retentive Areas
-
Primary Retentive and Primary Peripheral Seal Area:
- Retromolar Pad: The area behind the last molar that provides retention and support.
-
Secondary Peripheral Seal Area:
- Anterior Lingual Border: The area along the anterior border of the lingual vestibule that aids in retention.
Relief Areas
- Crest of Residual Ridge: The top of the ridge should be relieved to prevent pressure sores.
- Mental Foramen: The opening for the mental nerve; should be avoided to prevent discomfort.
- Mylohyoid Ridge: The bony ridge along the mandible that may require relief.
Posterior Palatal Seal (PPS)
The posterior palatal seal is critical for ensuring a complete seal, which enhances the retention of the maxillary denture.
Functions of the Posterior Palatal Seal
- Displacement of Soft Tissues: Slightly displaces the soft tissues at the distal end of the denture to ensure a complete seal.
- Prevention of Food Ingress: Prevents food and saliva from entering beneath the denture base.
- Control of Impression Material: Prevents excess impression material from running down the patient's throat.
Vibrating Lines
-
Vibrating Line: An imaginary line that passes from one pterygomaxillary notch to the other, located 2 mm in front of the fovea palatine, always on the soft palate. The distal end of the denture should be positioned 1-2 mm posterior to this line.
-
Anterior Vibrating Line:
- Located at the junction between the immovable tissues of the hard palate and the slightly movable tissues of the soft palate.
- Identified by asking the patient to say "ah" in short vigorous bursts or performing the Valsalva maneuver.
- The line has a cupid bow shape.
-
Posterior Vibrating Line:
- Located at the junction of the soft palate that shows limited movement and the soft palate that shows marked movement.