Talk to us?

Periodontology - NEETMDS- courses
NEET MDS Lessons
Periodontology

Hypercementosis

Hypercementosis is a dental condition characterized by the excessive deposition of cementum on the roots of teeth. This condition can have various clinical implications and is associated with several underlying factors. Understanding hypercementosis is essential for dental professionals in diagnosing and managing related conditions.

Characteristics of Hypercementosis

  1. Definition:

    • Hypercementosis is defined as a generalized thickening of the cementum, often accompanied by nodular enlargement of the apical third of the root. It can also manifest as spike-like excrescences known as cemental spikes.
  2. Forms of Hypercementosis:

    • Generalized Type: Involves a uniform thickening of cementum across multiple teeth.
    • Localized Type: Characterized by nodular enlargements or cemental spikes, which may result from:
      • Coalescence of cementicles adhering to the root.
      • Calcification of periodontal fibers at their insertion points into the cementum.

Radiographic Appearance

  • Radiographic Features:
    • On radiographs, hypercementosis is identified by the presence of a radiolucent shadow of the periodontal ligament and a radiopaque lamina dura surrounding the area of hypercementosis, similar to normal cementum.
    • Differentiation:
      • Hypercementosis can be differentiated from other conditions such as periapical cemental dysplasia, condensing osteitis, and focal periapical osteopetrosis, as these entities are located outside the shadow of the periodontal ligament and lamina dura.

Etiology of Hypercementosis

  • Varied Etiology:

    • The exact cause of hypercementosis is not completely understood, but several factors have been identified:
      • Spike-like Hypercementosis: Often results from excessive tension due to orthodontic appliances or occlusal forces.
      • Generalized Hypercementosis: Can occur in various circumstances, including:
        • Teeth Without Antagonists: In cases where teeth lack opposing teeth, hypercementosis may develop as a compensatory mechanism to keep pace with excessive tooth eruption.
        • Low-Grade Periapical Irritation: Associated with pulp disease, where hypercementosis serves as compensation for the loss of fibrous attachment to the tooth.
  • Systemic Associations:

    • Hypercementosis may also be observed in systemic conditions, including:
      • Paget’s Disease: Characterized by hypercementosis of the entire dentition.
      • Other Conditions: Acromegaly, arthritis, calcinosis, rheumatic fever, and thyroid goiter have also been linked to hypercementosis.

Clinical Implications

  1. Diagnosis:

    • Recognizing hypercementosis is important for accurate diagnosis and treatment planning. Radiographic evaluation is essential for distinguishing hypercementosis from other dental pathologies.
  2. Management:

    • While hypercementosis itself may not require treatment, it can complicate dental procedures such as extractions or endodontic treatments. Understanding the condition can help clinicians anticipate potential challenges.
  3. Monitoring:

    • Regular monitoring of patients with known systemic conditions associated with hypercementosis is important to manage any potential complications.

Bacterial Properties Involved in Evasion of Host Defense Mechanisms

Bacteria have evolved various strategies to evade the host's immune defenses, allowing them to persist and cause disease. Understanding these mechanisms is crucial for developing effective treatments and preventive measures against bacterial infections, particularly in the context of periodontal disease. This lecture will explore the bacterial species involved, their properties, and the biological effects of these properties on host defense mechanisms.

Host Defense Mechanisms and Bacterial Evasion Strategies

  1. Specific Antibody Evasion

    • Bacterial Species:
      • Porphyromonas gingivalis
      • Prevotella intermedia
      • Prevotella melaninogenica
      • Capnocytophaga spp.
    • Bacterial Property:
      • IgA- and IgG-degrading proteases
    • Biologic Effect:
      • Degradation of specific antibodies, which impairs the host's ability to mount an effective immune response against these bacteria.
  2. Evasion of Polymorphonuclear Leukocytes (PMNs)

    • Bacterial Species:
      • Aggregatibacter actinomycetemcomitans
      • Fusobacterium nucleatum
      • Porphyromonas gingivalis
      • Treponema denticola
    • Bacterial Properties:
      • Leukotoxin: A toxin that can induce apoptosis in PMNs.
      • Heat-sensitive surface protein: May interfere with immune recognition.
      • Capsule: A protective layer that inhibits phagocytosis.
      • Inhibition of superoxide production: Reduces the oxidative burst necessary for bacterial killing.
    • Biologic Effects:
      • Inhibition of PMN function, leading to decreased bacterial killing.
      • Induction of apoptosis (programmed cell death) in PMNs, reducing the number of immune cells available to fight infection.
      • Inhibition of phagocytosis, allowing bacteria to evade clearance.
  3. Evasion of Lymphocytes

    • Bacterial Species:
      • Aggregatibacter actinomycetemcomitans
      • Fusobacterium nucleatum
      • Tannerella forsythia
      • Prevotella intermedia
    • Bacterial Properties:
      • Leukotoxin: Induces apoptosis in lymphocytes.
      • Cytolethal distending toxin: Affects cell cycle progression and induces cell death.
      • Heat-sensitive surface protein: May interfere with immune recognition.
      • Cytotoxin: Directly damages immune cells.
    • Biologic Effects:
      • Killing of mature B and T cells, leading to a weakened adaptive immune response.
      • Nonlethal suppression of lymphocyte activity, impairing the immune response.
      • Impairment of lymphocyte function by arresting the cell cycle, leading to decreased responses to antigens and mitogens.
      • Induction of apoptosis in mononuclear cells and lymphocytes, further reducing immune capacity.
  4. Inhibition of Interleukin-8 (IL-8) Production

    • Bacterial Species:
      • Porphyromonas gingivalis
    • Bacterial Property:
      • Inhibition of IL-8 production by epithelial cells.
    • Biologic Effect:
      • Impairment of PMN response to bacteria, leading to reduced recruitment and activation of neutrophils at the site of infection.

Alveolar Process

The alveolar process is a critical component of the dental anatomy, providing support for the teeth and playing a vital role in periodontal health. Understanding its structure and composition is essential for dental professionals in diagnosing and treating various dental conditions.

Components of the Alveolar Process

  1. External Plate of Cortical Bone:

    • Description: The outer layer of the alveolar process is composed of cortical bone, which is dense and forms a protective outer shell.
    • Composition:
      • Formed by Haversian bone, which consists of organized structures called osteons.
      • Compacted bone lamellae contribute to the strength and stability of the alveolar process.
  2. Alveolar Bone Proper:

    • Description: The inner socket wall of the alveolar process is known as the alveolar bone proper.
    • Radiographic Appearance:
      • It is seen as the lamina dura on radiographs, appearing as a radiopaque line surrounding the tooth roots.
    • Histological Features:
      • Contains a series of openings known as the cribriform plate.
      • These openings allow neurovascular bundles to connect the periodontal ligament with the central component of the alveolar bone, which is the cancellous bone.
  3. Cancellous Bone:

    • Description: Located between the external cortical bone and the alveolar bone proper, cancellous bone consists of trabecular structures.
    • Function:
      • Acts as supporting alveolar bone, providing strength and flexibility to the alveolar process.
    • Interdental Septum:
      • The interdental septum consists of cancellous supporting bone enclosed within a compact border, providing stability between adjacent teeth.

Structural Characteristics

  • Facial and Lingual Portions:
    • Most of the facial and lingual portions of the tooth socket are formed by compact bone alone, providing robust support for the teeth.
  • Cancellous Bone Distribution:
    • Cancellous bone surrounds the lamina dura in specific areas:
      • Apical Areas: The region at the tip of the tooth root.
      • Apicolingual Areas: The area where the root meets the lingual surface.
      • Interradicular Areas: The space between the roots of multi-rooted teeth.

Periodontal Medicaments

Periodontal diseases often require adjunctive therapies to traditional mechanical treatments such as scaling and root planing. Various medicaments have been developed to enhance the healing process and control infection in periodontal tissues. This lecture will discuss several periodontal medicaments, their compositions, and their clinical applications.

1. Elyzol

  • Composition:
    • Elyzol is an oil-based gel containing 25% metronidazole. It is formulated with glyceryl mono-oleate and sesame oil.
  • Clinical Use:
    • Elyzol has been found to be equivalent to scaling and root planing in terms of effectiveness for treating periodontal disease.
    • However, no adjunctive effects beyond those achieved with mechanical debridement have been demonstrated.

2. Actisite

  • Composition:

    • Actisite consists of tetracycline-containing fibers.
    • Each fiber has a diameter of 0.5 mm and contains 12.7 mg of tetracycline per 9 inches of fiber.
  • Clinical Use:

    • The fibers are placed directly into periodontal pockets, where they release tetracycline over time, helping to reduce bacterial load and promote healing.

3. Arestin

  • Composition:

    • Arestin contains minocycline, which is delivered as a biodegradable powder in a syringe.
  • Clinical Use:

    • Arestin is indicated for the treatment of periodontal disease and is applied directly into periodontal pockets, where it provides localized antibiotic therapy.

4. Atridox

  • Composition:

    • Atridox contains 10% doxycycline in a syringeable gel system that is biodegradable.
  • Clinical Use:

    • The gel is injected into periodontal pockets, where it solidifies and releases doxycycline over time, aiding in the management of periodontal disease.

5. Dentamycin and Periocline

  • Composition:

    • Both Dentamycin and Periocline contain 2% minocycline hydrochloride.
  • Clinical Use:

    • These products are used similarly to other local delivery systems, providing localized antibiotic therapy to reduce bacterial infection in periodontal pockets.

6. Periochip

  • Composition:

    • Periochip is a biodegradable chip that contains chlorhexidine.
  • Clinical Use:

    • The chip is placed in the gingival crevice, where it releases chlorhexidine over time, providing antimicrobial action and helping to control periodontal disease.

Gingival Crevicular Fluid (GCF)

Gingival crevicular fluid is an inflammatory exudate found in the gingival sulcus. It plays a significant role in periodontal health and disease.

A. Characteristics of GCF

  • Glucose Concentration: The glucose concentration in GCF is 3-4 times greater than that in serum, indicating increased metabolic activity in inflamed tissues.
  • Protein Content: The total protein content of GCF is much less than that of serum, reflecting its role as an inflammatory exudate.
  • Inflammatory Nature: GCF is present in clinically normal sulci due to the constant low-grade inflammation of the gingiva.

B. Drugs Excreted Through GCF

  • Tetracyclines and Metronidazole: These antibiotics are known to be excreted through GCF, making them effective for localized periodontal therapy.

C. Collection Methods for GCF

GCF can be collected using various techniques, including:

  1. Absorbing Paper Strips/Blotter/Periopaper: These strips absorb fluid from the sulcus and are commonly used for GCF collection.
  2. Twisted Threads: Placing twisted threads around and into the sulcus can help collect GCF.
  3. Micropipettes: These can be used for precise collection of GCF in research settings.
  4. Intra-Crevicular Washings: Flushing the sulcus with a saline solution can help collect GCF for analysis.

Periodontal Diseases Associated with Neutrophil Disorders

  1. Acute Necrotizing Ulcerative Gingivitis (ANUG)

    • Description: A severe form of gingivitis characterized by necrosis of the interdental papillae, pain, and foul odor.
    • Association: Neutrophil dysfunction can exacerbate the severity of ANUG, leading to rapid tissue destruction.
  2. Localized Juvenile Periodontitis

    • Description: A form of periodontitis that typically affects adolescents and is characterized by localized bone loss around the permanent teeth.
    • Association: Impaired neutrophil function contributes to the pathogenesis of this condition.
  3. Prepubertal Periodontitis

    • Description: A rare form of periodontitis that occurs in children before puberty, leading to rapid attachment loss and bone destruction.
    • Association: Neutrophil disorders can play a significant role in the development and progression of this disease.
  4. Rapidly Progressive Periodontitis

    • Description: A form of periodontitis characterized by rapid attachment loss and bone destruction, often occurring in young adults.
    • Association: Neutrophil dysfunction may contribute to the aggressive nature of this disease.
  5. Refractory Periodontitis

    • Description: A form of periodontitis that does not respond to conventional treatment and continues to progress despite therapy.
    • Association: Neutrophil disorders may be implicated in the persistent nature of this condition.

Acquired Pellicle in the Oral Cavity

The acquired pellicle is a crucial component of oral health, serving as the first line of defense in the oral cavity and playing a significant role in the initial stages of biofilm formation on tooth surfaces. Understanding the composition, formation, and function of the acquired pellicle is essential for dental professionals in managing oral health.

Composition of the Acquired Pellicle

  1. Definition:

    • The acquired pellicle is a thin, organic layer that coats all surfaces in the oral cavity, including both hard (tooth enamel) and soft tissues (gingiva, mucosa).
  2. Components:

    • The pellicle consists of more than 180 peptides, proteins, and glycoproteins, which include:
      • Keratins: Structural proteins that provide strength.
      • Mucins: Glycoproteins that contribute to the viscosity and protective properties of saliva.
      • Proline-rich proteins: Involved in the binding of calcium and phosphate.
      • Phosphoproteins: Such as statherin, which helps in maintaining calcium levels and preventing mineral loss.
      • Histidine-rich proteins: May play a role in buffering and mineralization.
    • These components function as adhesion sites (receptors) for bacteria, facilitating the initial colonization of tooth surfaces.

Formation and Maturation of the Acquired Pellicle

  1. Rapid Formation:

    • The salivary pellicle can be detected on clean enamel surfaces within 1 minute after exposure to saliva. This rapid formation is crucial for protecting the enamel and providing a substrate for bacterial adhesion.
  2. Equilibrium State:

    • By 2 hours, the pellicle reaches a state of equilibrium between adsorption (the process of molecules adhering to the surface) and detachment. This dynamic balance allows for the continuous exchange of molecules within the pellicle.
  3. Maturation:

    • Although the initial pellicle formation occurs quickly, further maturation can be observed over several hours. This maturation process involves the incorporation of additional salivary components and the establishment of a more complex structure.

Interaction with Bacteria

  1. Bacterial Adhesion:

    • Bacteria that adhere to tooth surfaces do not contact the enamel directly; instead, they interact with the acquired enamel pellicle. This interaction is critical for the formation of dental biofilms (plaque).
  2. Active Role of the Pellicle:

    • The acquired pellicle is not merely a passive adhesion matrix. Many proteins within the pellicle retain enzymatic activity when incorporated. Some of these enzymes include:
      • Peroxidases: Enzymes that can break down hydrogen peroxide and may have antimicrobial properties.
      • Lysozyme: An enzyme that can lyse bacterial cell walls, contributing to the antibacterial defense.
      • α-Amylase: An enzyme that breaks down starches and may influence the metabolism of adhering bacteria.

Clinical Significance

  1. Role in Oral Health:

    • The acquired pellicle plays a protective role by providing a barrier against acids and bacteria, helping to maintain the integrity of tooth enamel and soft tissues.
  2. Biofilm Formation:

    • Understanding the role of the pellicle in bacterial adhesion is essential for managing plaque-related diseases, such as dental caries and periodontal disease.
  3. Preventive Strategies:

    • Dental professionals can use knowledge of the acquired pellicle to develop preventive strategies, such as promoting saliva flow and maintaining good oral hygiene practices to minimize plaque accumulation.
  4. Therapeutic Applications:

    • The enzymatic activities of pellicle proteins can be targeted in the development of therapeutic agents aimed at enhancing oral health and preventing bacterial colonization.

Explore by Exams