Talk to us?

Periodontology - NEETMDS- courses
NEET MDS Lessons
Periodontology

Epithelial Turnover Rates in Oral Tissues

Epithelial turnover is a critical process in maintaining the health and integrity of oral tissues. Understanding the turnover rates of different epithelial types in the oral cavity can provide insights into their regenerative capabilities and responses to injury or disease.

Turnover Rates of Oral Epithelial Tissues

  1. Junctional Epithelium:

    • Turnover Rate1-6 days
    • Description:
      • The junctional epithelium is a specialized epithelial tissue that forms the attachment between the gingiva and the tooth surface.
      • Its rapid turnover rate is essential for maintaining a healthy seal around the tooth and for responding quickly to inflammatory changes or injury.
  2. Palate, Tongue, and Cheeks:

    • Turnover Rate5-6 days
    • Description:
      • The epithelial tissues of the hard palate, tongue, and buccal mucosa (cheeks) have a moderate turnover rate.
      • This relatively quick turnover helps maintain the integrity of these surfaces, which are subject to mechanical stress and potential injury from food and other environmental factors.
  3. Gingiva:

    • Turnover Rate10-12 days
    • Description:
      • The gingival epithelium has a slower turnover rate compared to the junctional epithelium and the epithelium of the palate, tongue, and cheeks.
      • This slower rate reflects the need for stability in the gingival tissue, which plays a crucial role in supporting the teeth and maintaining periodontal health.

Clinical Significance

  • Wound Healing:

    • The rapid turnover of the junctional epithelium is particularly important in the context of periodontal health, as it allows for quick healing of any disruptions caused by inflammation or mechanical trauma.
  • Response to Disease:

    • Understanding the turnover rates can help clinicians anticipate how quickly tissues may respond to treatment or how they may regenerate after surgical procedures.
  • Oral Health Maintenance:

    • The varying turnover rates highlight the importance of maintaining good oral hygiene practices to support the health of these tissues, especially in areas with slower turnover rates like the gingiva.

Sutures for Periodontal Flaps

Suturing is a critical aspect of periodontal surgery, particularly when managing periodontal flaps. The choice of suture material can significantly influence healing, tissue adaptation, and overall surgical outcomes.

1. Nonabsorbable Sutures

Nonabsorbable sutures are designed to remain in the tissue until they are manually removed. They are often used in situations where long-term support is needed.

A. Types of Nonabsorbable Sutures

  1. Silk (Braided)

    • Characteristics:
      • Excellent handling properties and knot security.
      • Provides good tissue approximation.
    • Applications: Commonly used in periodontal surgeries due to its ease of use and reliability.
  2. Nylon (Monofilament) (Ethilon)

    • Characteristics:
      • Strong and resistant to stretching.
      • Less tissue reactivity compared to silk.
    • Applications: Ideal for delicate tissues and areas requiring minimal tissue trauma.
  3. ePTFE (Monofilament) (Gore-Tex)

    • Characteristics:
      • Biocompatible and non-reactive.
      • Excellent tensile strength and flexibility.
    • Applications: Often used in guided tissue regeneration procedures and in areas where long-term support is needed.
  4. Polyester (Braided) (Ethibond)

    • Characteristics:
      • High tensile strength and good knot security.
      • Less pliable than silk.
    • Applications: Used in situations requiring strong sutures, such as in flap stabilization.

2. Absorbable Sutures

Absorbable sutures are designed to be broken down by the body over time, eliminating the need for removal. They are often used in periodontal surgeries where temporary support is sufficient.

A. Types of Absorbable Sutures

  1. Surgical Gut

    • Plain Gut (Monofilament)

      • Absorption Time: Approximately 30 days.
      • Characteristics: Made from sheep or cow intestines; provides good tensile strength initially but loses strength quickly.
      • Applications: Suitable for soft tissue approximation where rapid absorption is desired.
    • Chromic Gut (Monofilament)

      • Absorption Time: Approximately 45 to 60 days.
      • Characteristics: Treated with chromium salts to delay absorption; retains strength longer than plain gut.
      • Applications: Used in areas where a longer healing time is expected.
  2. Synthetic Absorbable Sutures

    • Polyglycolic Acid (Braided) (Vicryl, Ethicon)

      • Absorption Time: Approximately 16 to 20 days.
      • Characteristics: Provides good tensile strength and is absorbed predictably.
      • Applications: Commonly used in periodontal and oral surgeries due to its handling properties.
    • Dexon (Davis & Geck)

      • Characteristics: Similar to Vicryl; made from polyglycolic acid.
      • Applications: Used in soft tissue approximation and ligation.
    • Polyglycaprone (Monofilament) (Maxon)

      • Absorption Time: Similar to Vicryl.
      • Characteristics: Offers excellent tensile strength and is absorbed more slowly than other synthetic options.
      • Applications: Ideal for areas requiring longer support during healing.

Zones of Periodontal Disease

Listgarten described four distinct zones that can be observed in periodontal lesions. These zones may blend with each other and may not be present in every case.

Zones of Periodontal Disease

  1. Zone 1: Bacterial Zone

    • Description: This is the most superficial zone, consisting of a diverse array of bacteria.
    • Characteristics:
      • The bacterial zone is primarily composed of various microbial species, including both pathogenic and non-pathogenic bacteria.
      • This zone is critical in the initiation and progression of periodontal disease, as the presence of specific bacteria can trigger inflammatory responses in the host.
  2. Zone 2: Neutrophil Rich Zone

    • Description: This zone contains numerous leukocytes, predominantly neutrophils.
    • Characteristics:
      • The neutrophil-rich zone is indicative of the body’s immune response to the bacterial invasion.
      • Neutrophils are the first line of defense and play a crucial role in phagocytosing bacteria and releasing inflammatory mediators.
      • The presence of a high number of neutrophils suggests an acute inflammatory response, which is common in active periodontal disease.
  3. Zone 3: Necrotic Zone

    • Description: This zone consists of disintegrated tissue cells, fibrillar material, remnants of collagen fibers, and spirochetes.
    • Characteristics:
      • The necrotic zone reflects tissue destruction and is characterized by the presence of dead or dying cells.
      • Fibrillar material and remnants of collagen fibers indicate the breakdown of the extracellular matrix, which is essential for maintaining periodontal tissue integrity.
      • Spirochetes, which are associated with more aggressive forms of periodontal disease, can also be found in this zone, contributing to the necrotic process.
  4. Zone 4: Zone of Spirochetal Infiltration

    • Description: This zone consists of well-preserved tissue that is infiltrated with large and medium spirochetes.
    • Characteristics:
      • The zone of spirochetal infiltration indicates a more chronic phase of periodontal disease, where spirochetes invade the connective tissue.
      • The presence of well-preserved tissue suggests that while spirochetes are present, the tissue has not yet undergone extensive necrosis.
      • This zone is significant as it highlights the role of spirochetes in the pathogenesis of periodontal disease, particularly in cases of necrotizing periodontal diseases.

Dimensions of Toothbrushes

Toothbrushes play a crucial role in maintaining oral hygiene, and their design can significantly impact their effectiveness. The American Dental Association (ADA) has established guidelines for the dimensions and characteristics of acceptable toothbrushes. This lecture will outline these specifications and discuss their implications for dental health.

Acceptable Dimensions of Toothbrushes

  1. Brushing Surface Dimensions:

    • Length:
      • Acceptable brushing surfaces should measure between 1 to 1.25 inches (25.4 to 31.8 mm) long.
    • Width:
      • The width of the brushing surface should range from 5/16 to 3/8 inch (7.9 to 9.5 mm).
    • Rows of Bristles:
      • Toothbrushes should have 2 to 4 rows of bristles to effectively clean the teeth and gums.
    • Tufts per Row:
      • Each row should contain 5 to 12 tufts of bristles, allowing for adequate coverage and cleaning ability.
  2. Filament Diameter:

    • The diameter of the bristles can vary, affecting the stiffness and cleaning effectiveness:
      • Soft Filaments:
        • Diameter of 0.2 mm (0.007 inches). Ideal for sensitive gums and children.
      • Medium Filaments:
        • Diameter of 0.3 mm (0.012 inches). Suitable for most adults.
      • Hard Filaments:
        • Diameter of 0.4 mm (0.014 inches). Generally not recommended for daily use as they can be abrasive to the gums and enamel.
  3. Filament Stiffness:

    • The stiffness of the bristles is determined by the diameter relative to the length of the filament. Thicker filaments tend to be stiffer, which can affect the brushing technique and comfort.

Special Considerations for Children's Toothbrushes

  • Size:
    • Children's toothbrushes are designed to be smaller to accommodate their smaller mouths and teeth.
  • Bristle Thickness:
    • The bristles are thinner, measuring 0.005 inches (0.1 mm) in diameter, making them gentler on sensitive gums.
  • Bristle Length:
    • The bristles are shorter, typically around 0.344 inches (8.7 mm), to ensure effective cleaning without causing discomfort.

Clinical Implications

  1. Choosing the Right Toothbrush:

    • Dental professionals should guide patients in selecting toothbrushes that meet ADA specifications to ensure effective plaque removal and gum protection.
    • Emphasizing the importance of using soft or medium bristles can help prevent gum recession and enamel wear.
  2. Education on Brushing Technique:

    • Proper brushing technique is as important as the toothbrush itself. Patients should be educated on how to use their toothbrush effectively, regardless of the type they choose.
  3. Regular Replacement:

    • Patients should be advised to replace their toothbrush every 3 to 4 months or sooner if the bristles become frayed. This ensures optimal cleaning effectiveness.
  4. Special Considerations for Children:

    • Parents should be encouraged to choose appropriately sized toothbrushes for their children and to supervise brushing to ensure proper technique and effectiveness.

Trauma from Occlusion

Trauma from occlusion refers to the injury sustained by periodontal tissues when occlusal forces exceed their adaptive capacity.

1. Trauma from Occlusion

  • This term describes the injury that occurs to periodontal tissues when the forces exerted during occlusion (the contact between opposing teeth) exceed the ability of those tissues to adapt.
  • Traumatic Occlusion: An occlusion that produces such injury is referred to as a traumatic occlusion. This can result from various factors, including malocclusion, excessive occlusal forces, or parafunctional habits (e.g., bruxism).

2. Clinical Signs of Trauma to the Periodontium

The most common clinical sign of trauma to the periodontium is:

  • Increased Tooth Mobility: As the periodontal tissues are subjected to excessive forces, they may become compromised, leading to increased mobility of the affected teeth. This is often one of the first observable signs of trauma from occlusion.

3. Radiographic Signs of Trauma from Occlusion

Radiographic examination can reveal several signs indicative of trauma from occlusion:

  1. Increased Width of Periodontal Space:

    • The periodontal ligament space may appear wider on radiographs due to the increased forces acting on the tooth, leading to a loss of attachment and bone support.
  2. Vertical Destruction of Inter-Dental Septum:

    • Trauma from occlusion can lead to vertical bone loss in the inter-dental septa, which may be visible on radiographs as a reduction in bone height between adjacent teeth.
  3. Radiolucency and Condensation of the Alveolar Bone:

    • Areas of radiolucency may indicate bone loss, while areas of increased radiopacity (condensation) can suggest reactive changes in the bone due to the stress of occlusal forces.
  4. Root Resorption:

    • In severe cases, trauma from occlusion can lead to root resorption, which may be observed as a loss of root structure on radiographs.

Stippling of the Gingiva

  • Stippling refers to the textured surface of the gingiva that resembles the skin of an orange. This characteristic is best observed when the gingiva is dried.

  • Characteristics:

    • Location:
      • The attached gingiva is typically stippled, while the marginal gingiva is not.
      • The central portion of the interdental gingiva may exhibit stippling, but its marginal borders are usually smooth.
    • Surface Variation:
      • Stippling is generally less prominent on the lingual surfaces compared to the facial surfaces and may be absent in some individuals.
    • Age-Related Changes:
      • Stippling is absent in infancy, begins to appear around 5 years of age, increases until adulthood, and may start to disappear in old age.

Attached Gingiva

  • Definition: The attached gingiva is the portion of the gingiva that is firmly bound to the underlying alveolar bone and extends from the free gingival groove to the mucogingival junction, where it meets the alveolar mucosa.

  • Characteristics:

    • Structure:
      • The attached gingiva is classified as a mucoperiosteum, tightly bound to the underlying alveolar bone.
    • Width:
      • The width of the attached gingiva is greatest in the incisor region, measuring approximately:
        • 3.5 – 4.5 mm in the maxilla
        • 3.3 – 3.9 mm in the mandible
      • It is narrower in the posterior segments, measuring about:
        • 1.9 mm in the maxillary first premolars
        • 1.8 mm in the mandibular first premolars.
    • Histological Features:
      • The attached gingiva is thick and keratinized (or parakeratinized) and is classified as masticatory mucosa.
      • Masticatory mucosa is characterized by a keratinized epithelium and a thick lamina propria, providing resistance to mechanical forces.

Masticatory vs. Lining Mucosa

  • Masticatory Mucosa:

    • Found in areas subject to high compression and friction, such as the gingiva and hard palate.
    • Characterized by keratinized epithelium and a thick lamina propria, making it resistant to masticatory forces.
  • Lining Mucosa:

    • Mobile, distensible, and non-keratinized.
    • Found in areas such as the lips, cheeks, alveolus, floor of the mouth, ventral surface of the tongue, and soft palate.
  • Specialized Mucosa:

    • Found on the dorsum of the tongue, adapted for specific functions such as taste.

Modified Widman Flap Procedure

The modified Widman flap procedure is a surgical technique used in periodontal therapy to treat periodontal pockets while preserving the surrounding tissues and promoting healing. This lecture will discuss the advantages and disadvantages of the modified Widman flap, its indications, and the procedural steps involved.

Advantages of the Modified Widman Flap Procedure

  1. Intimate Postoperative Adaptation:

    • The main advantage of the modified Widman flap procedure is the ability to establish a close adaptation of healthy collagenous connective tissues and normal epithelium to all tooth surfaces. This promotes better healing and integration of tissues post-surgery
  2. Feasibility for Bone Implantation:

    • The modified Widman flap procedure is advantageous over curettage, particularly when the implantation of bone and other substances is planned. This allows for better access and preparation of the surgical site for grafting .
  3. Conservation of Bone and Optimal Coverage:

    • Compared to conventional reverse bevel flap surgery, the modified Widman flap conserves bone and provides optimal coverage of root surfaces by soft tissues. This results in:
      • A more aesthetically pleasing outcome.
      • A favorable environment for oral hygiene.
      • Potentially less root sensitivity and reduced risk of root caries.
      • More effective pocket closure compared to pocket elimination procedures .
  4. Minimized Gingival Recession:

    • When reattachment or minimal gingival recession is desired, the modified Widman flap is preferred over subgingival curettage, making it a suitable choice for treating deeper pockets (greater than 5 mm) and other complex periodontal conditions.

Disadvantages of the Modified Widman Flap Procedure

  1. Interproximal Architecture:
    • One apparent disadvantage is the potential for flat or concave interproximal architecture immediately following the removal of the surgical dressing, particularly in areas with interproximal bony craters. This can affect the aesthetic outcome and may require further management .

Indications for the Modified Widman Flap Procedure

  • Deep Pockets: Pockets greater than 5 mm, especially in the anterior and buccal maxillary posterior regions.
  • Intrabony Pockets and Craters: Effective for treating pockets with vertical bone loss.
  • Furcation Involvement: Suitable for managing periodontal disease in multi-rooted teeth.
  • Bone Grafts: Facilitates the placement of bone grafts during surgery.
  • Severe Root Sensitivity: Indicated when root sensitivity is a significant concern.

Procedure Overview

  1. Incisions and Flap Reflection:

    • Vertical Incisions: Made to access the periodontal pocket.
    • Crevicular Incision: A horizontal incision along the gingival margin.
    • Horizontal Incision: Undermines and removes the collar of tissue around the teeth.
  2. Conservative Debridement:

    • Flap is reflected just beyond the alveolar crest.
    • Careful removal of all plaque and calculus while preserving the root surface.
    • Frequent sterile saline irrigation is used to maintain a clean surgical field.
  3. Preservation of Proximal Bone Surface:

    • The proximal bone surface is preserved and not curetted, allowing for better healing and adaptation of the flap.
    • Exact flap adaptation is achieved with full coverage of the bone.
  4. Suturing:

    • Suturing is aimed at achieving primary union of the proximal flap projections, ensuring proper healing and tissue integration.

Postoperative Care

  • Antibiotic Ointment and Periodontal Dressing: Traditionally, antibiotic ointment was applied over sutures, and a periodontal dressing was placed. However, these practices are often omitted today.
  • Current Recommendations: Patients are advised not to disturb the surgical area and to use a chlorhexidine mouth rinse every 12 hours for effective plaque control and to promote healing.


--------------

 

 

Neutrophil Disorders Associated with Periodontal Diseases

Neutrophils play a crucial role in the immune response, particularly in combating infections, including those associated with periodontal diseases. Various neutrophil disorders can significantly impact periodontal health, leading to increased susceptibility to periodontal diseases. This lecture will explore the relationship between neutrophil disorders and specific periodontal diseases.

Neutrophil Disorders

  1. Diabetes Mellitus

    • Description: A metabolic disorder characterized by high blood sugar levels due to insulin resistance or deficiency.
    • Impact on Neutrophils: Diabetes can impair neutrophil function, including chemotaxis, phagocytosis, and the oxidative burst, leading to an increased risk of periodontal infections.
  2. Papillon-Lefevre Syndrome

    • Description: A rare genetic disorder characterized by palmoplantar keratoderma and severe periodontitis.
    • Impact on Neutrophils: Patients exhibit neutrophil dysfunction, leading to early onset and rapid progression of periodontal disease.
  3. Down’s Syndrome

    • Description: A genetic disorder caused by the presence of an extra chromosome 21, leading to various developmental and health issues.
    • Impact on Neutrophils: Individuals with Down’s syndrome often have impaired neutrophil function, which contributes to an increased prevalence of periodontal disease.
  4. Chediak-Higashi Syndrome

    • Description: A rare genetic disorder characterized by immunodeficiency, partial oculocutaneous albinism, and neurological problems.
    • Impact on Neutrophils: This syndrome results in defective neutrophil chemotaxis and phagocytosis, leading to increased susceptibility to infections, including periodontal diseases.
  5. Drug-Induced Agranulocytosis

    • Description: A condition characterized by a dangerously low level of neutrophils due to certain medications.
    • Impact on Neutrophils: The reduction in neutrophil count compromises the immune response, increasing the risk of periodontal infections.
  6. Cyclic Neutropenia

    • Description: A rare genetic disorder characterized by recurrent episodes of neutropenia (low neutrophil count) occurring every 21 days.
    • Impact on Neutrophils: During neutropenic episodes, patients are at a heightened risk for infections, including periodontal disease.

Explore by Exams