NEET MDS Lessons
Periodontology
Some important points about the periodontal pocket :
·Soft tissue of pocket wall shows both proliferative & degenerative changes
·Most severe degenerative changes are seen on the lateral wall of pocket
·Plasma cells are the predominant infiltrate (80%). Others include lymphocytes &
a scattering of PMNs
·Height of junctional epithelium shortened to only 50-100µm
·Severity of degenerative changes is not linked to pocket depth
·Junctional epithelium starts to lose attachment to tooth when PMN infiltration
in junctional epithelium increases above 60%.
Gracey Curettes
Gracey curettes are specialized instruments designed for periodontal therapy, particularly for subgingival scaling and root planing. Their unique design allows for optimal adaptation to the complex anatomy of the teeth and surrounding tissues. This lecture will cover the characteristics, specific uses, and advantages of Gracey curettes in periodontal practice.
-
Gracey curettes are area-specific curettes that come in a set of instruments, each designed and angled to adapt to specific anatomical areas of the dentition.
-
Purpose: They are considered some of the best instruments for subgingival scaling and root planing due to their ability to provide excellent adaptation to complex root anatomy.
Specific Gracey Curette Designs and Uses
-
Gracey 1/2 and 3/4:
- Indication: Designed for use on anterior teeth.
- Application: Effective for scaling and root planing in the anterior region, allowing for precise access to the root surfaces.
-
Gracey 5/6:
- Indication: Suitable for anterior teeth and premolars.
- Application: Versatile for both anterior and premolar areas, providing effective scaling in these regions.
-
Gracey 7/8 and 9/10:
- Indication: Designed for posterior teeth, specifically for facial and lingual surfaces.
- Application: Ideal for accessing the buccal and lingual surfaces of posterior teeth, ensuring thorough cleaning.
-
Gracey 11/12:
- Indication: Specifically designed for the mesial surfaces of posterior teeth.
- Application: Allows for effective scaling of the mesial aspects of molars and premolars.
-
Gracey 13/14:
- Indication: Designed for the distal surfaces of posterior teeth.
- Application: Facilitates access to the distal surfaces of molars and premolars, ensuring comprehensive treatment.
Key Features of Gracey Curettes
-
Area-Specific Design: Each Gracey curette is tailored for specific areas of the dentition, allowing for better access and adaptation to the unique contours of the teeth.
-
Offset Blade: Unlike universal curettes, the blade of a Gracey curette is not positioned at a 90-degree angle to the lower shank. Instead, the blade is angled approximately 60 to 70 degrees from the lower shank, which is referred to as an "offset blade." This design enhances the instrument's ability to adapt to the tooth surface and root anatomy.
Advantages of Gracey Curettes
-
Optimal Adaptation: The area-specific design and offset blade allow for better adaptation to the complex anatomy of the roots, making them highly effective for subgingival scaling and root planing.
-
Improved Access: The angled blades enable clinicians to access difficult-to-reach areas, such as furcations and concavities, which are often challenging with standard instruments.
-
Enhanced Efficiency: The design of Gracey curettes allows for more efficient removal of calculus and biofilm from root surfaces, contributing to improved periodontal health.
-
Reduced Tissue Trauma: The precise design minimizes trauma to the surrounding soft tissues, promoting better healing and patient comfort.
Trauma from Occlusion
Trauma from occlusion refers to the injury sustained by periodontal tissues when occlusal forces exceed their adaptive capacity.
1. Trauma from Occlusion
- This term describes the injury that occurs to periodontal tissues when the forces exerted during occlusion (the contact between opposing teeth) exceed the ability of those tissues to adapt.
- Traumatic Occlusion: An occlusion that produces such injury is referred to as a traumatic occlusion. This can result from various factors, including malocclusion, excessive occlusal forces, or parafunctional habits (e.g., bruxism).
2. Clinical Signs of Trauma to the Periodontium
The most common clinical sign of trauma to the periodontium is:
- Increased Tooth Mobility: As the periodontal tissues are subjected to excessive forces, they may become compromised, leading to increased mobility of the affected teeth. This is often one of the first observable signs of trauma from occlusion.
3. Radiographic Signs of Trauma from Occlusion
Radiographic examination can reveal several signs indicative of trauma from occlusion:
-
Increased Width of Periodontal Space:
- The periodontal ligament space may appear wider on radiographs due to the increased forces acting on the tooth, leading to a loss of attachment and bone support.
-
Vertical Destruction of Inter-Dental Septum:
- Trauma from occlusion can lead to vertical bone loss in the inter-dental septa, which may be visible on radiographs as a reduction in bone height between adjacent teeth.
-
Radiolucency and Condensation of the Alveolar Bone:
- Areas of radiolucency may indicate bone loss, while areas of increased radiopacity (condensation) can suggest reactive changes in the bone due to the stress of occlusal forces.
-
Root Resorption:
- In severe cases, trauma from occlusion can lead to root resorption, which may be observed as a loss of root structure on radiographs.
Modified Gingival Index (MGI)
The Modified Gingival Index (MGI) is a clinical tool used to assess the severity of gingival inflammation. It provides a standardized method for evaluating the health of the gingival tissues, which is essential for diagnosing periodontal conditions and monitoring treatment outcomes. Understanding the scoring criteria of the MGI is crucial for dental professionals in their assessments.
Scoring Criteria for the Modified Gingival Index (MGI)
The MGI uses a scale from 0 to 4 to classify the degree of gingival inflammation. Each score corresponds to specific clinical findings:
-
Score 0: Absence of Inflammation
- Description: No signs of inflammation are present in the gingival tissues.
- Clinical Significance: Indicates healthy gingiva with no bleeding or other pathological changes.
-
Score 1: Mild Inflammation
- Description:
- Slight change in color (e.g., slight redness).
- Little change in texture of any portion of the marginal or papillary gingival unit, but not affecting the entire unit.
- Clinical Significance: Suggests early signs of gingival inflammation, which may require monitoring and preventive measures.
- Description:
-
Score 2: Mild Inflammation (Widespread)
- Description:
- Similar criteria as Score 1, but involving the entire marginal or papillary gingival unit.
- Clinical Significance: Indicates a more widespread mild inflammation that may necessitate intervention to prevent progression.
- Description:
-
Score 3: Moderate Inflammation
- Description:
- Glazing of the gingiva.
- Redness, edema, and/or hypertrophy of the marginal or papillary gingival unit.
- Clinical Significance: Reflects a moderate level of inflammation that may require active treatment to reduce inflammation and restore gingival health.
- Description:
-
Score 4: Severe Inflammation
- Description:
- Marked redness, edema, and/or hypertrophy of the marginal or papillary gingival unit.
- Presence of spontaneous bleeding, congestion, or ulceration.
- Clinical Significance: Indicates severe gingival disease that requires immediate intervention and may be associated with periodontal disease.
- Description:
Clinical Application of the MGI
-
Assessment of Gingival Health:
- The MGI provides a systematic approach to evaluate gingival health, allowing for consistent documentation of inflammation levels.
-
Monitoring Treatment Outcomes:
- Regular use of the MGI can help track changes in gingival health over time, assessing the effectiveness of periodontal treatments and preventive measures.
-
Patient Education:
- The MGI can be used to educate patients about their gingival health status, helping them understand the importance of oral hygiene and regular dental visits.
-
Research and Epidemiological Studies:
- The MGI is often used in clinical research to evaluate the prevalence and severity of gingival disease in populations.
Classification of Periodontal Pockets
Periodontal pockets are an important aspect of periodontal disease, reflecting the health of the supporting structures of the teeth. Understanding the classification of these pockets is essential for diagnosis, treatment planning, and management of periodontal conditions.
Classification of Pockets
-
Gingival Pocket:
- Also Known As: Pseudo-pocket.
- Formation:
- Formed by gingival enlargement without destruction of the underlying periodontal tissues.
- The sulcus is deepened due to the increased bulk of the gingiva.
- Characteristics:
- There is no destruction of the supporting periodontal tissues.
- Typically associated with conditions such as gingival hyperplasia or inflammation.
-
Periodontal Pocket:
- Definition: A pocket that results in the destruction of the supporting periodontal tissues, leading to the loosening and potential exfoliation of teeth.
- Classification Based on Location:
- Suprabony Pocket:
- The base of the pocket is coronal to the alveolar bone.
- The pattern of bone destruction is horizontal.
- The transseptal fibers are arranged horizontally in the space between the base of the pocket and the alveolar bone.
- Infrabony Pocket:
- The base of the pocket is apical to the alveolar bone, meaning the pocket wall lies between the bone and the tooth.
- The pattern of bone destruction is vertical.
- The transseptal fibers are oblique rather than horizontal.
- Suprabony Pocket:
Classification of Periodontal Pockets
-
Suprabony Pocket (Supracrestal or Supraalveolar):
- Location: Base of the pocket is coronal to the alveolar bone.
- Bone Destruction: Horizontal pattern of bone loss.
- Transseptal Fibers: Arranged horizontally.
-
Infrabony Pocket (Intrabony, Subcrestal, or Intraalveolar):
- Location: Base of the pocket is apical to the alveolar bone.
- Bone Destruction: Vertical pattern of bone loss.
- Transseptal Fibers: Arranged obliquely.
Classification of Pockets According to Involved Tooth Surfaces
-
Simple Pocket:
- Definition: Involves only one tooth surface.
- Example: A pocket that is present only on the buccal surface of a tooth.
-
Compound Pocket:
- Definition: A pocket present on two or more surfaces of a tooth.
- Example: A pocket that involves both the buccal and lingual surfaces.
-
Spiral Pocket:
- Definition: Originates on one tooth surface and twists around the tooth to involve one or more additional surfaces.
- Example: A pocket that starts on the mesial surface and wraps around to the distal surface.
Connective Tissue of the Gingiva and Related Cellular Components
The connective tissue of the gingiva, known as the lamina propria, plays a crucial role in supporting the gingival epithelium and maintaining periodontal health. This lecture will cover the structure of the lamina propria, the types of connective tissue fibers present, the role of Langerhans cells, and the changes observed in the periodontal ligament (PDL) with aging.
Structure of the Lamina Propria
-
Layers of the Lamina Propria:
- The lamina propria consists of two distinct layers:
- Papillary Layer:
- The upper layer that interdigitates with the epithelium, containing finger-like projections that increase the surface area for exchange of nutrients and waste.
- Reticular Layer:
- The deeper layer that provides structural support and contains larger blood vessels and nerves.
- Papillary Layer:
- The lamina propria consists of two distinct layers:
-
Types of Connective Tissue Fibers:
-
The lamina propria contains three main types of connective tissue fibers:
- Collagen Fibers:
- Type I Collagen: Forms the bulk of the lamina propria and provides tensile strength to the gingival fibers, essential for maintaining the integrity of the gingiva.
- Reticular Fibers:
- These fibers provide a supportive network within the connective tissue.
- Elastic Fibers:
- Contribute to the elasticity and flexibility of the gingival tissue.
- Collagen Fibers:
-
Type IV Collagen:
- Found branching between the Type I collagen bundles, it is continuous with the fibers of the basement membrane and the walls of blood vessels.
-
Langerhans Cells
-
Description:
- Langerhans cells are dendritic cells located among keratinocytes at all suprabasal levels of the gingival epithelium.
- They belong to the mononuclear phagocyte system and play a critical role in immune responses.
-
Function:
- Act as antigen-presenting cells for lymphocytes, facilitating the immune reaction.
- Contain specific granules known as Birbeck’s granules and exhibit marked ATP activity.
-
Location:
- Found in the oral epithelium of normal gingiva and in small amounts in the sulcular epithelium.
- Absent from the junctional epithelium of normal gingiva.
Changes in the Periodontal Ligament (PDL) with Aging
- Aging Effects:
- With aging, several changes have been reported in the periodontal
ligament:
- Decreased Numbers of Fibroblasts: This reduction can lead to impaired healing and regeneration of the PDL.
- Irregular Structure: The PDL may exhibit a more irregular structure, paralleling changes in the gingival connective tissues.
- Decreased Organic Matrix Production: This can affect the overall health and function of the PDL.
- Epithelial Cell Rests: There may be a decrease in the number of epithelial cell rests, which are remnants of the Hertwig's epithelial root sheath.
- Increased Amounts of Elastic Fibers: This change may contribute to the altered mechanical properties of the PDL.
- With aging, several changes have been reported in the periodontal
ligament:
Localized Aggressive Periodontitis and Necrotizing Ulcerative Gingivitis
Localized Aggressive Periodontitis (LAP)
Localized aggressive periodontitis, previously known as localized juvenile periodontitis, is characterized by specific microbial profiles and clinical features.
- Microbiota Composition:
- The microbiota associated with LAP is predominantly composed of:
- Gram-Negative, Capnophilic, and Anaerobic Rods.
- Key Organisms:
- Actinobacillus actinomycetemcomitans: The main organism involved in LAP.
- Other significant organisms include:
- Porphyromonas gingivalis
- Eikenella corrodens
- Campylobacter rectus
- Bacteroides capillus
- Spirochetes (various species).
- Viral Associations:
- Herpes viruses, including Epstein-Barr Virus-1 (EBV-1) and Human Cytomegalovirus (HCMV), have also been associated with LAP.
- The microbiota associated with LAP is predominantly composed of:
Necrotizing Ulcerative Gingivitis (NUG)
- Microbial Profile:
- NUG is characterized by high levels of:
- Prevotella intermedia
- Spirochetes (various species).
- NUG is characterized by high levels of:
- Clinical Features:
- NUG presents with necrosis of the gingival tissue, pain, and ulceration, often accompanied by systemic symptoms.
Microbial Shifts in Periodontal Disease
When comparing the microbiota across different states of periodontal health, a distinct microbial shift can be identified as the disease progresses from health to gingivitis to periodontitis:
-
From Gram-Positive to Gram-Negative:
- Healthy gingival sites are predominantly colonized by gram-positive bacteria, while diseased sites show an increase in gram-negative bacteria.
-
From Cocci to Rods (and Later to Spirochetes):
- In health, cocci (spherical bacteria) are prevalent. As the disease progresses, there is a shift towards rod-shaped bacteria, and in advanced stages, spirochetes become more prominent.
-
From Non-Motile to Motile Organisms:
- Healthy sites are often dominated by non-motile bacteria, while motile organisms increase in number as periodontal disease develops.
-
From Facultative Anaerobes to Obligate Anaerobes:
- In health, facultative anaerobes (which can survive with or without oxygen) are common. In contrast, obligate anaerobes (which thrive in the absence of oxygen) become more prevalent in periodontal disease.
-
From Fermenting to Proteolytic Species:
- The microbial community shifts from fermentative bacteria, which primarily metabolize carbohydrates, to proteolytic species that break down proteins, contributing to tissue destruction and inflammation.