Talk to us?

Periodontology - NEETMDS- courses
NEET MDS Lessons
Periodontology

Significant Immune Findings in Periodontal Diseases

Periodontal diseases are associated with various immune responses that can influence disease progression and severity. Understanding these immune findings is crucial for diagnosing and managing different forms of periodontal disease.

Immune Findings in Specific Periodontal Diseases

  1. Acute Necrotizing Ulcerative Gingivitis (ANUG):

    • Findings:
      • PMN (Polymorphonuclear neutrophil) chemotactic defect: This defect impairs the ability of neutrophils to migrate to the site of infection, compromising the immune response.
      • Elevated antibody titres to Prevotella intermedia and intermediate-sized spirochetes: Indicates an immune response to specific pathogens associated with the disease.
  2. Pregnancy Gingivitis:

    • Findings:
      • No significant immune findings reported: While pregnancy gingivitis is common, it does not show distinct immune abnormalities compared to other forms of periodontal disease.
  3. Adult Periodontitis:

    • Findings:
      • Elevated antibody titres to Porphyromonas gingivalis and other periodontopathogens: Suggests a heightened immune response to these specific bacteria.
      • Occurrence of immune complexes in tissues: Indicates an immune reaction that may contribute to tissue damage.
      • Immediate hypersensitivity to gingival bacteria: Reflects an exaggerated immune response to bacterial antigens.
      • Cell-mediated immunity to gingival bacteria: Suggests involvement of T-cells in the immune response against periodontal pathogens.
  4. Juvenile Periodontitis:

    • Localized Juvenile Periodontitis (LJP):
      • Findings:
        • PMN chemotactic defect and depressed phagocytosis: Impairs the ability of neutrophils to respond effectively to bacterial invasion.
        • Elevated antibody titres to Actinobacillus actinomycetemcomitans: Indicates an immune response to this specific pathogen.
    • Generalized Juvenile Periodontitis (GJP):
      • Findings:
        • PMN chemotactic defect and depressed phagocytosis: Similar to LJP, indicating a compromised immune response.
        • Elevated antibody titres to Porphyromonas gingivalis: Suggests an immune response to this pathogen.
  5. Prepubertal Periodontitis:

    • Findings:
      • PMN chemotactic defect and depressed phagocytosis: Indicates impaired neutrophil function.
      • Elevated antibody titres to Actinobacillus actinomycetemcomitans: Suggests an immune response to this pathogen.
  6. Rapid Periodontitis:

    • Findings:
      • Suppressed or enhanced PMN or monocyte chemotaxis: Indicates variability in immune response among individuals.
      • Elevated antibody titres to several gram-negative bacteria: Reflects an immune response to multiple pathogens.
  7. Refractory Periodontitis:

    • Findings:
      • Reduced PMN chemotaxis: Indicates impaired neutrophil migration, which may contribute to disease persistence despite treatment.
  8. Desquamative Gingivitis:

    • Findings:
      • Diagnostic or characteristic immunopathology in two-thirds of cases: Suggests an underlying immune mechanism.
      • Autoimmune etiology in cases resulting from pemphigus and pemphigoid: Indicates that some cases may be due to autoimmune processes affecting the gingival tissue.

Anatomy and Histology of the Periodontium

Gingiva (normal clinical appearance): no muscles, no glands; keratinized

  • Color: coral pink but does vary with individuals and races due to cutaneous pigmentation
  • Papillary contour: pyramidal shape with one F and one L papilla and the col filling interproximal space to the contact area (col the starting place gingivitis)
  • Marginal contour: knife-edged and scalloped
  • Texture: stippled (orange-peel texture); blow air to dry out and see where stippling ends to see end of gingiva
  • Consistency: firm and resilient (push against it and won’t move); bound to underlying bone
  • Sulcus depth: 0-3mm
  • Exudate: no exudates (blood, pus, water)

  Anatomic and histological structures

Gingival unit: includes periodontium above alveolar crest of bone

a. Alveolar mucosa: histology- non-keratinized, stratified, squamous epithelium, submucosa with glands, loose connective tissue with collagen and elastin, muscles.  No epithelial ridges, no stratum granulosum (flattened cells below keratin layer)

b. Mucogingival junction: clinical demarcation between alveolar mucosa and attached gingiva

c. Attached gingiva: histology- keratinized, stratified, squamous epithelium with epithelial ridges (basal cell layer, prickle cell layer, granular cell layer (stratum granulosum), keratin layer); no submucosa

  • Dense connective tissue: predominantly collagen, bound to periosteum of bone by Sharpey fibers
  • Reticular fibers between collagen fibers and are continuous with reticulin in blood vessels

d. Free gingival groove: demarcation between attached and free gingiva; denotes base of gingival sulcus in normal gingiva; not always seen

e. Free gingival margin: area from free gingival groove to epithelial attachment (up and over ® inside)

  • Oral surface: stratified, squamous epithelium with epithelial ridges
  • Tooth side surface (sulcular epithelium): non-keratinized, stratified, squamous epithelium with no epithelial ridges (basal cell and prickle cell layers)

f. Gingival sulcus: space bounded by tooth surface, sulcular epithelium, and junctional epithelium; 0-3mm depth; space between epithelium and tooth

g. Dento-gingival junction: combination of epithelial and fibrous attachment

  • Junctional epithelium (epithelial attachment): attachment of epithelial cells by hemi-desmosomes and sticky substances (basal lamina- 800-1200 A, DAS-acid mucopolysaccharides, hyaluronic acid, chondroitin sulfate A, C, and B), to enamel, enamel and cementum, or cementum depending on stage of passive eruption.  Length ranges from 0.25-1.35mm.
  • Fibrous attachment: attachment of collagen fibers (Sharpey’s fibers) into cementum just beneath epithelial attachment; ~ 1mm thick

h. Nerve fibers: myelinated and non-myelinated (for pain) in connective tissue.  Both free and specialized endings for pain, touch pressure, and temperature -> proprioception.  If dentures, rely on TMJ.

i.Mesh of terminal argyophilic fibers (stain silver), some extending into epithelium

ii  Meissner-type corpuscles: pressure sensitive sensory nerve encased in CT

iii.Krause-type corpuscles: temperature receptors

iv. Encapsulated spindles

i. Gingival fibers:

i.  Gingivodental group:

  • Group I (A): from cementum to free gingival margin
  • Group II (B): from cementum to attached gingiva
  • Group III (C): from cementum over alveolar crest to periosteum on buccal and lingual plates

ii.  Circular (ligamentum circularis): encircles tooth in free gingiva

iii. Transeptal fibers: connects cementum of adjacent teeth, runs over interdental septum of alveolar bone.  Separates gingival unit from attachment apparatus.

Transeptal and Group III fibers the major defense against stuff getting into bone and ligament.

 

2.  Attachment apparatus: periodontium below alveolar crest of bone

Periodontal ligament: Sharpey’s fibers (collagen) connecting cementum to bone (bundle bone).  Few elastic and oxytalan fibers associated with blood vessels and embedded in cementum in cervical third of tooth.  Components divided as follows:

i. Alveolar crest fibers: from cementum just below CEJ apical to alveolar crest of bone

ii.Horizontal fibers: just apical to alveolar crest group, run at right angles to long axis of tooth from cementum horizontally to alveolar bone proper

iii.Oblique fibers: most numerous, from cementum run coronally to alveolar bone proper

iv. Apical fibers: radiate from cementum around apex of root apically to alveolar bone proper, form socket base

v. Interradicular fibers: found only between roots of multi-rooted teeth from cementum to alveolar bone proper

vi. Intermediate plexus: fibers which splice Sharpey’s fibers from bone and cementum

vii. Epithelial Rests of Malassez: cluster and individual epithelial cells close to cementum which are remnants of Hertwig’s epithelial root sheath; potential source of periodontal cysts.

viii. Nerve fibers: myelinated and non-myelinated; abundant supply of sensory free nerve endings capable of transmitting tactile pressure and pain sensation by trigeminal pathway and elongated spindle-like nerve fiber for proprioceptive impulses

Cementum: 45-50% inorganic; 50-55% organic (enamel is 97% inorganic; dentin 70% inorganic)

i.  Acellular cementum: no cementocytes; covers dentin (older) in coronal ½ to 2/3 of root, 16-60 mm thick

ii. Cellular cementum: cementocytes; covers dentin in apical ½ to 1/3 of root; also may cover acellular cementum areas in repair areas, 15-200 mm thick

iii. Precementum (cementoid): meshwork of irregularly arranged collagen in surface of cementum where formation starts

iv. Cemento-enamel junction (CEJ): 60-65% of time cementum overlaps enamel; 30% meet end-to-end; 5-10% space between

v. Cementum slower healing than bone or PDL.  If expose dentinotubules ® root sensitivity.

Alveolar bone: 65% inorganic, 35% organic

i. Alveolar bone proper (cribriform plate): lamina dura on x-ray; bundle bone receive Sharpey fibers from PDL

ii. Supporting bone: cancellous, trabecular (vascularized) and F and L plates of compact bone

Blood supply to periodontium

i. Alveolar blood vessels (inferior and superior)

A) Interalveolar: actually runs through bone then exits, main supply to alveolar bone and PDL

B) Supraperiosteal: just outside bone, to gingiva and alveolar bone

C) Dental (pulpal): to pulp and periapical area

D) Terminal vessels (supracrestal): anastomose of A and B above beneath the sulcular epithelium

E) PDL gets blood from: most from branches of interalveolar blood vessels from alveolar bone marrow spaces, supraperiosteal vessels when interalveolar vessels not present, pulpal (apical) vessels, supracrestal gingival vessels

ii. Lymphatic drainage: accompany blood vessels to regional lymph nodes (esp. submaxillary group)

Sutures for Periodontal Flaps

Suturing is a critical aspect of periodontal surgery, particularly when managing periodontal flaps. The choice of suture material can significantly influence healing, tissue adaptation, and overall surgical outcomes.

1. Nonabsorbable Sutures

Nonabsorbable sutures are designed to remain in the tissue until they are manually removed. They are often used in situations where long-term support is needed.

A. Types of Nonabsorbable Sutures

  1. Silk (Braided)

    • Characteristics:
      • Excellent handling properties and knot security.
      • Provides good tissue approximation.
    • Applications: Commonly used in periodontal surgeries due to its ease of use and reliability.
  2. Nylon (Monofilament) (Ethilon)

    • Characteristics:
      • Strong and resistant to stretching.
      • Less tissue reactivity compared to silk.
    • Applications: Ideal for delicate tissues and areas requiring minimal tissue trauma.
  3. ePTFE (Monofilament) (Gore-Tex)

    • Characteristics:
      • Biocompatible and non-reactive.
      • Excellent tensile strength and flexibility.
    • Applications: Often used in guided tissue regeneration procedures and in areas where long-term support is needed.
  4. Polyester (Braided) (Ethibond)

    • Characteristics:
      • High tensile strength and good knot security.
      • Less pliable than silk.
    • Applications: Used in situations requiring strong sutures, such as in flap stabilization.

2. Absorbable Sutures

Absorbable sutures are designed to be broken down by the body over time, eliminating the need for removal. They are often used in periodontal surgeries where temporary support is sufficient.

A. Types of Absorbable Sutures

  1. Surgical Gut

    • Plain Gut (Monofilament)

      • Absorption Time: Approximately 30 days.
      • Characteristics: Made from sheep or cow intestines; provides good tensile strength initially but loses strength quickly.
      • Applications: Suitable for soft tissue approximation where rapid absorption is desired.
    • Chromic Gut (Monofilament)

      • Absorption Time: Approximately 45 to 60 days.
      • Characteristics: Treated with chromium salts to delay absorption; retains strength longer than plain gut.
      • Applications: Used in areas where a longer healing time is expected.
  2. Synthetic Absorbable Sutures

    • Polyglycolic Acid (Braided) (Vicryl, Ethicon)

      • Absorption Time: Approximately 16 to 20 days.
      • Characteristics: Provides good tensile strength and is absorbed predictably.
      • Applications: Commonly used in periodontal and oral surgeries due to its handling properties.
    • Dexon (Davis & Geck)

      • Characteristics: Similar to Vicryl; made from polyglycolic acid.
      • Applications: Used in soft tissue approximation and ligation.
    • Polyglycaprone (Monofilament) (Maxon)

      • Absorption Time: Similar to Vicryl.
      • Characteristics: Offers excellent tensile strength and is absorbed more slowly than other synthetic options.
      • Applications: Ideal for areas requiring longer support during healing.

Microbes in Periodontics

Bacteria Associated with Periodontal Health

  • Primary Species:

    • Gram-Positive Facultative Bacteria:
      • Streptococcus:
        • S. sanguis
        • S. mitis
        • A. viscosus
        • A. naeslundii
      • Actinomyces:
        • Beneficial for maintaining periodontal health.
  • Protective or Beneficial Bacteria:

    • Key Species:
      • S. sanguis
      • Veillonella parvula
      • Corynebacterium ochracea
    • Characteristics:
      • Found in higher numbers at inactive periodontal sites (no attachment loss).
      • Low numbers at sites with active periodontal destruction.
      • Prevent colonization of pathogenic microorganisms (e.g., S. sanguis produces peroxide).
  • Clinical Relevance:

    • High levels of C. ochracea and S. sanguis are associated with greater attachment gain post-therapy.

Microbiology of Chronic Plaque-Induced Gingivitis

  • Composition:

    • Roughly equal proportions of:
      • Gram-Positive: 56%
      • Gram-Negative: 44%
      • Facultative: 59%
      • Anaerobic: 41%
  • Predominant Gram-Positive Species:

    • S. sanguis
    • S. mitis
    • S. intermedius
    • S. oralis
    • A. viscosus
    • A. naeslundii
    • Peptostreptococcus micros
  • Predominant Gram-Negative Species:

    • Fusobacterium nucleatum
    • Porphyromonas intermedia
    • Veillonella parvula
    • Haemophilus spp.
    • Capnocytophaga spp.
    • Campylobacter spp.
  • Pregnancy-Associated Gingivitis:

    • Increased levels of steroid hormones and P. intermedia.

Chronic Periodontitis

  • Key Microbial Species:

    • High levels of:
      • Porphyromonas gingivalis
      • Bacteroides forsythus
      • Porphyromonas intermedia
      • Campylobacter rectus
      • Eikenella corrodens
      • Fusobacterium nucleatum
      • Actinobacillus actinomycetemcomitans
      • Peptostreptococcus micros
      • Treponema spp.
      • Eubacterium spp.
  • Pathogenic Mechanisms:

    • P. gingivalis and A. actinomycetemcomitans can invade host tissue cells.
    • Viruses such as Epstein-Barr Virus-1 (EBV-1) and human cytomegalovirus (HCMV) may contribute to bone loss.

Localized Aggressive Periodontitis

  • Microbiota Characteristics:
    • Predominantly gram-negative, capnophilic, and anaerobic rods.
    • Almost all localized juvenile periodontitis (LJP) sites harbor A. actinomycetemcomitans, which can comprise up to 90% of the total cultivable microbiota.

Trauma from Occlusion

Trauma from occlusion refers to the injury sustained by periodontal tissues when occlusal forces exceed their adaptive capacity.

1. Trauma from Occlusion

  • This term describes the injury that occurs to periodontal tissues when the forces exerted during occlusion (the contact between opposing teeth) exceed the ability of those tissues to adapt.
  • Traumatic Occlusion: An occlusion that produces such injury is referred to as a traumatic occlusion. This can result from various factors, including malocclusion, excessive occlusal forces, or parafunctional habits (e.g., bruxism).

2. Clinical Signs of Trauma to the Periodontium

The most common clinical sign of trauma to the periodontium is:

  • Increased Tooth Mobility: As the periodontal tissues are subjected to excessive forces, they may become compromised, leading to increased mobility of the affected teeth. This is often one of the first observable signs of trauma from occlusion.

3. Radiographic Signs of Trauma from Occlusion

Radiographic examination can reveal several signs indicative of trauma from occlusion:

  1. Increased Width of Periodontal Space:

    • The periodontal ligament space may appear wider on radiographs due to the increased forces acting on the tooth, leading to a loss of attachment and bone support.
  2. Vertical Destruction of Inter-Dental Septum:

    • Trauma from occlusion can lead to vertical bone loss in the inter-dental septa, which may be visible on radiographs as a reduction in bone height between adjacent teeth.
  3. Radiolucency and Condensation of the Alveolar Bone:

    • Areas of radiolucency may indicate bone loss, while areas of increased radiopacity (condensation) can suggest reactive changes in the bone due to the stress of occlusal forces.
  4. Root Resorption:

    • In severe cases, trauma from occlusion can lead to root resorption, which may be observed as a loss of root structure on radiographs.

Epithelial Turnover Rates in Oral Tissues

Epithelial turnover is a critical process in maintaining the health and integrity of oral tissues. Understanding the turnover rates of different epithelial types in the oral cavity can provide insights into their regenerative capabilities and responses to injury or disease.

Turnover Rates of Oral Epithelial Tissues

  1. Junctional Epithelium:

    • Turnover Rate1-6 days
    • Description:
      • The junctional epithelium is a specialized epithelial tissue that forms the attachment between the gingiva and the tooth surface.
      • Its rapid turnover rate is essential for maintaining a healthy seal around the tooth and for responding quickly to inflammatory changes or injury.
  2. Palate, Tongue, and Cheeks:

    • Turnover Rate5-6 days
    • Description:
      • The epithelial tissues of the hard palate, tongue, and buccal mucosa (cheeks) have a moderate turnover rate.
      • This relatively quick turnover helps maintain the integrity of these surfaces, which are subject to mechanical stress and potential injury from food and other environmental factors.
  3. Gingiva:

    • Turnover Rate10-12 days
    • Description:
      • The gingival epithelium has a slower turnover rate compared to the junctional epithelium and the epithelium of the palate, tongue, and cheeks.
      • This slower rate reflects the need for stability in the gingival tissue, which plays a crucial role in supporting the teeth and maintaining periodontal health.

Clinical Significance

  • Wound Healing:

    • The rapid turnover of the junctional epithelium is particularly important in the context of periodontal health, as it allows for quick healing of any disruptions caused by inflammation or mechanical trauma.
  • Response to Disease:

    • Understanding the turnover rates can help clinicians anticipate how quickly tissues may respond to treatment or how they may regenerate after surgical procedures.
  • Oral Health Maintenance:

    • The varying turnover rates highlight the importance of maintaining good oral hygiene practices to support the health of these tissues, especially in areas with slower turnover rates like the gingiva.

Flossing Technique

Flossing is an essential part of oral hygiene that helps remove plaque and food particles from between the teeth and along the gumline, areas that toothbrushes may not effectively clean. Proper flossing technique is crucial for maintaining gum health and preventing cavities.

Flossing Technique

  1. Preparation:

    • Length of Floss: Take 12 to 18 inches of dental floss. This length allows for adequate maneuverability and ensures that you can use a clean section of floss for each tooth.
    • Grasping the Floss: Hold the floss taut between your hands, leaving a couple of inches of floss between your fingers. This tension helps control the floss as you maneuver it between your teeth.
  2. Inserting the Floss:

    • Slip Between Teeth: Gently slide the floss between your teeth. Be careful not to snap the floss, as this can cause trauma to the gums.
    • Positioning: Insert the floss into the area between your teeth and gums as far as it will comfortably go, ensuring that you reach the gumline.
  3. Flossing Motion:

    • Vertical Strokes: Use 8 to 10 vertical strokes with the floss to dislodge food particles and plaque. Move the floss up and down against the sides of each tooth, making sure to clean both the front and back surfaces.
    • C-Shaped Motion: For optimal cleaning, wrap the floss around the tooth in a C-shape and gently slide it beneath the gumline.
  4. Frequency:

    • Daily Flossing: Aim to floss at least once a day. Consistency is key to maintaining good oral hygiene.
    • Best Time to Floss: The most important time to floss is before going to bed, as this helps remove debris and plaque that can accumulate throughout the day.
  5. Flossing and Brushing:

    • Order of Operations: Flossing can be done either before or after brushing your teeth. Both methods are effective, so choose the one that fits best into your routine.

Explore by Exams