NEET MDS Lessons
Periodontology
Localized Aggressive Periodontitis and Necrotizing Ulcerative Gingivitis
Localized Aggressive Periodontitis (LAP)
Localized aggressive periodontitis, previously known as localized juvenile periodontitis, is characterized by specific microbial profiles and clinical features.
- Microbiota Composition:
- The microbiota associated with LAP is predominantly composed of:
- Gram-Negative, Capnophilic, and Anaerobic Rods.
- Key Organisms:
- Actinobacillus actinomycetemcomitans: The main organism involved in LAP.
- Other significant organisms include:
- Porphyromonas gingivalis
- Eikenella corrodens
- Campylobacter rectus
- Bacteroides capillus
- Spirochetes (various species).
- Viral Associations:
- Herpes viruses, including Epstein-Barr Virus-1 (EBV-1) and Human Cytomegalovirus (HCMV), have also been associated with LAP.
- The microbiota associated with LAP is predominantly composed of:
Necrotizing Ulcerative Gingivitis (NUG)
- Microbial Profile:
- NUG is characterized by high levels of:
- Prevotella intermedia
- Spirochetes (various species).
- NUG is characterized by high levels of:
- Clinical Features:
- NUG presents with necrosis of the gingival tissue, pain, and ulceration, often accompanied by systemic symptoms.
Microbial Shifts in Periodontal Disease
When comparing the microbiota across different states of periodontal health, a distinct microbial shift can be identified as the disease progresses from health to gingivitis to periodontitis:
-
From Gram-Positive to Gram-Negative:
- Healthy gingival sites are predominantly colonized by gram-positive bacteria, while diseased sites show an increase in gram-negative bacteria.
-
From Cocci to Rods (and Later to Spirochetes):
- In health, cocci (spherical bacteria) are prevalent. As the disease progresses, there is a shift towards rod-shaped bacteria, and in advanced stages, spirochetes become more prominent.
-
From Non-Motile to Motile Organisms:
- Healthy sites are often dominated by non-motile bacteria, while motile organisms increase in number as periodontal disease develops.
-
From Facultative Anaerobes to Obligate Anaerobes:
- In health, facultative anaerobes (which can survive with or without oxygen) are common. In contrast, obligate anaerobes (which thrive in the absence of oxygen) become more prevalent in periodontal disease.
-
From Fermenting to Proteolytic Species:
- The microbial community shifts from fermentative bacteria, which primarily metabolize carbohydrates, to proteolytic species that break down proteins, contributing to tissue destruction and inflammation.
Naber’s Probe and Furcation Involvement
Furcation involvement is a critical aspect of periodontal disease that affects the prognosis of teeth with multiple roots. Naber’s probe is a specialized instrument designed to assess furcation areas, allowing clinicians to determine the extent of periodontal attachment loss and the condition of the furcation. This lecture will cover the use of Naber’s probe, the classification of furcation involvement, and the clinical significance of these classifications.
Naber’s Probe
-
Description: Naber’s probe is a curved, blunt-ended instrument specifically designed for probing furcation areas. Its unique shape allows for horizontal probing, which is essential for accurately assessing the anatomy of multi-rooted teeth.
-
Usage: The probe is inserted horizontally into the furcation area to evaluate the extent of periodontal involvement. The clinician can feel the anatomical fluting between the roots, which aids in determining the classification of furcation involvement.
Classification of Furcation Involvement
Furcation involvement is classified into four main classes using Naber’s probe:
-
Class I:
- Description: The furcation can be probed to a depth of 3 mm.
- Clinical Findings: The probe can feel the anatomical fluting between the roots, but it cannot engage the roof of the furcation.
- Significance: Indicates early furcation involvement with minimal attachment loss.
-
Class II:
- Description: The furcation can be probed to a depth greater than 3 mm, but not through and through.
- Clinical Findings: This class represents a range between Class I and Class III, where there is partial loss of attachment but not complete penetration through the furcation.
- Significance: Indicates moderate furcation involvement that may require intervention.
-
Class III:
- Description: The furcation can be completely probed through and through.
- Clinical Findings: The probe passes from one furcation to the other, indicating significant loss of periodontal support.
- Significance: Represents advanced furcation involvement, often associated with a poor prognosis for the affected tooth.
-
Class III+:
- Description: The probe can go halfway across the tooth.
- Clinical Findings: Similar to Class III, but with partial obstruction or remaining tissue.
- Significance: Indicates severe furcation involvement with a significant loss of attachment.
-
Class IV:
- Description: Clinically, the examiner can see through the furcation.
- Clinical Findings: There is complete loss of tissue covering the furcation, making it visible upon examination.
- Significance: Indicates the most severe form of furcation involvement, often leading to tooth mobility and extraction.
Measurement Technique
- Measurement Reference: Measurements are taken from an imaginary tangent connecting the prominences of the root surfaces of both roots. This provides a consistent reference point for assessing the depth of furcation involvement.
Clinical Significance
-
Prognosis: The classification of furcation involvement is crucial for determining the prognosis of multi-rooted teeth. Higher classes of furcation involvement generally indicate a poorer prognosis and may necessitate more aggressive treatment strategies.
-
Treatment Planning: Understanding the extent of furcation involvement helps clinicians develop appropriate treatment plans, which may include scaling and root planing, surgical intervention, or extraction.
-
Monitoring: Regular assessment of furcation involvement using Naber’s probe can help monitor disease progression and the effectiveness of periodontal therapy.
Plaque Formation
Dental plaque is a biofilm that forms on the surfaces of teeth and is a key factor in the development of dental caries and periodontal disease. The process of plaque formation can be divided into three major phases:
1. Formation of Pellicle on the Tooth Surface
- Definition: The pellicle is a thin, acellular film that forms on the tooth surface shortly after cleaning.
- Composition: It is primarily composed of salivary glycoproteins and other proteins that are adsorbed onto the enamel surface.
- Function:
- The pellicle serves as a protective barrier for the tooth surface.
- It provides a substrate for bacterial adhesion, facilitating the subsequent stages of plaque formation.
2. Initial Adhesion & Attachment of Bacteria
- Mechanism:
- Bacteria in the oral cavity begin to adhere to the pellicle-coated tooth surface.
- This initial adhesion is mediated by specific interactions between bacterial adhesins (surface proteins) and the components of the pellicle.
- Key Bacterial Species:
- Primary colonizers, such as Streptococcus sanguis and Actinomyces viscosus, are among the first to attach.
- Importance:
- Successful adhesion is crucial for the establishment of plaque, as it allows for the accumulation of additional bacteria.
3. Colonization & Plaque Maturation
- Colonization:
- Once initial bacteria have adhered, they proliferate and create a more complex community.
- Secondary colonizers, including gram-negative anaerobic bacteria, begin to join the biofilm.
- Plaque Maturation:
- As the plaque matures, it develops a three-dimensional structure, with different bacterial species occupying specific niches within the biofilm.
- The matrix of extracellular polysaccharides and salivary glycoproteins becomes more pronounced, providing structural integrity to the plaque.
- Coaggregation:
- Different bacterial species can adhere to one another through coaggregation, enhancing the complexity of the plaque community.
Composition of Plaque
- Matrix Composition:
- Plaque is primarily composed of bacteria embedded in a matrix of salivary glycoproteins and extracellular polysaccharides.
- Implications for Removal:
- The dense and cohesive nature of this matrix makes it difficult to remove plaque through simple rinsing or the use of sprays.
- Effective plaque removal typically requires mechanical means, such as brushing and flossing, to disrupt the biofilm structure.
Periodontal Fibers
Periodontal fibers play a crucial role in maintaining the integrity of the periodontal ligament and supporting the teeth within the alveolar bone. Understanding the different groups of periodontal fibers is essential for comprehending their functions in periodontal health and disease.
1. Gingivodental Group
- Location:
- Present on the facial, lingual, and interproximal surfaces of the teeth.
- Attachment:
- These fibers are embedded in the cementum just beneath the epithelium at the base of the gingival sulcus.
- Function:
- They help support the gingiva and maintain the position of the gingival margin.
2. Circular Group
- Location:
- These fibers course through the connective tissue of the marginal and interdental gingiva.
- Attachment:
- They encircle the tooth in a ring-like fashion.
- Function:
- The circular fibers help maintain the contour of the gingiva and provide support to the marginal gingiva.
3. Transseptal Group
- Location:
- Located interproximally, these fibers extend between the cementum of adjacent teeth.
- Attachment:
- They lie in the area between the epithelium at the base of the gingival sulcus and the crest of the interdental bone.
- Function:
- The transseptal fibers are primarily responsible for the post-retention relapse of orthodontically positioned teeth.
- They are sometimes classified as principal fibers of the periodontal ligament.
- Collectively, they form the interdental ligament of the arch, providing stability to the interproximal areas.
4. Semicircular Fibers
- Location:
- These fibers attach to the proximal surface of a tooth immediately below the cementoenamel junction (CEJ).
- Attachment:
- They go around the facial or lingual marginal gingiva of the tooth and attach to the other proximal surface of the same tooth.
- Function:
- Semicircular fibers help maintain the position of the tooth and support the gingival tissue around it.
5. Transgingival Fibers
- Location:
- These fibers attach to the proximal surface of one tooth and traverse the interdental space diagonally to attach to the proximal surface of the adjacent tooth.
- Function:
- Transgingival fibers provide support across the interdental space, helping to maintain the position of adjacent teeth and the integrity of the gingival tissue.
Erythema Multiforme
- Characteristics: Erythema multiforme presents with
"target" or "bull's eye" lesions, often associated with:
- Etiologic Factors:
- Herpes simplex infection.
- Mycoplasma infection.
- Drug reactions (e.g., sulfonamides, penicillins, phenylbutazone, phenytoin).
- Etiologic Factors:
Acquired Pellicle in the Oral Cavity
The acquired pellicle is a crucial component of oral health, serving as the first line of defense in the oral cavity and playing a significant role in the initial stages of biofilm formation on tooth surfaces. Understanding the composition, formation, and function of the acquired pellicle is essential for dental professionals in managing oral health.
Composition of the Acquired Pellicle
-
Definition:
- The acquired pellicle is a thin, organic layer that coats all surfaces in the oral cavity, including both hard (tooth enamel) and soft tissues (gingiva, mucosa).
-
Components:
- The pellicle consists of more than 180 peptides, proteins,
and glycoproteins, which include:
- Keratins: Structural proteins that provide strength.
- Mucins: Glycoproteins that contribute to the viscosity and protective properties of saliva.
- Proline-rich proteins: Involved in the binding of calcium and phosphate.
- Phosphoproteins: Such as statherin, which helps in maintaining calcium levels and preventing mineral loss.
- Histidine-rich proteins: May play a role in buffering and mineralization.
- These components function as adhesion sites (receptors) for bacteria, facilitating the initial colonization of tooth surfaces.
- The pellicle consists of more than 180 peptides, proteins,
and glycoproteins, which include:
Formation and Maturation of the Acquired Pellicle
-
Rapid Formation:
- The salivary pellicle can be detected on clean enamel surfaces within 1 minute after exposure to saliva. This rapid formation is crucial for protecting the enamel and providing a substrate for bacterial adhesion.
-
Equilibrium State:
- By 2 hours, the pellicle reaches a state of equilibrium between adsorption (the process of molecules adhering to the surface) and detachment. This dynamic balance allows for the continuous exchange of molecules within the pellicle.
-
Maturation:
- Although the initial pellicle formation occurs quickly, further maturation can be observed over several hours. This maturation process involves the incorporation of additional salivary components and the establishment of a more complex structure.
Interaction with Bacteria
-
Bacterial Adhesion:
- Bacteria that adhere to tooth surfaces do not contact the enamel directly; instead, they interact with the acquired enamel pellicle. This interaction is critical for the formation of dental biofilms (plaque).
-
Active Role of the Pellicle:
- The acquired pellicle is not merely a passive adhesion matrix. Many
proteins within the pellicle retain enzymatic activity when
incorporated. Some of these enzymes include:
- Peroxidases: Enzymes that can break down hydrogen peroxide and may have antimicrobial properties.
- Lysozyme: An enzyme that can lyse bacterial cell walls, contributing to the antibacterial defense.
- α-Amylase: An enzyme that breaks down starches and may influence the metabolism of adhering bacteria.
- The acquired pellicle is not merely a passive adhesion matrix. Many
proteins within the pellicle retain enzymatic activity when
incorporated. Some of these enzymes include:
Clinical Significance
-
Role in Oral Health:
- The acquired pellicle plays a protective role by providing a barrier against acids and bacteria, helping to maintain the integrity of tooth enamel and soft tissues.
-
Biofilm Formation:
- Understanding the role of the pellicle in bacterial adhesion is essential for managing plaque-related diseases, such as dental caries and periodontal disease.
-
Preventive Strategies:
- Dental professionals can use knowledge of the acquired pellicle to develop preventive strategies, such as promoting saliva flow and maintaining good oral hygiene practices to minimize plaque accumulation.
-
Therapeutic Applications:
- The enzymatic activities of pellicle proteins can be targeted in the development of therapeutic agents aimed at enhancing oral health and preventing bacterial colonization.
Dental Plaque
Dental plaque is a biofilm that forms on the surfaces of teeth and is composed of a diverse community of microorganisms. The development of dental plaque occurs in stages, beginning with primary colonizers and progressing to secondary colonization and plaque maturation.
Primary Colonizers
- Timeframe:
- Acquired within a few hours after tooth cleaning or exposure.
- Characteristics:
- Predominantly gram-positive facultative microbes.
- Key Species:
- Actinomyces viscosus
- Streptococcus sanguis
- Adhesion Mechanism:
- Primary colonizers adhere to the tooth surface through specific adhesins.
- For example, A. viscosus possesses fimbriae that bind to proline-rich proteins in the dental pellicle, facilitating initial attachment.
Secondary Colonization and Plaque Maturation
- Microbial Composition:
- As plaque matures, it becomes predominantly populated by gram-negative anaerobic microorganisms.
- Key Species:
- Prevotella intermedia
- Prevotella loescheii
- Capnocytophaga spp.
- Fusobacterium nucleatum
- Porphyromonas gingivalis
- Coaggregation:
- Coaggregation refers to the ability of different species and genera of plaque microorganisms to adhere to one another.
- This process occurs primarily through highly specific stereochemical interactions of protein and carbohydrate molecules on cell surfaces, along with hydrophobic, electrostatic, and van der Waals forces.
Plaque Hypotheses
-
Specific Plaque Hypothesis:
- This hypothesis posits that only certain types of plaque are pathogenic.
- The pathogenicity of plaque depends on the presence or increase of specific microorganisms.
- It predicts that plaque harboring specific bacterial pathogens leads to periodontal disease due to the production of substances that mediate the destruction of host tissues.
-
Nonspecific Plaque Hypothesis:
- This hypothesis maintains that periodontal disease results from the overall activity of the entire plaque microflora.
- It suggests that the elaboration of noxious products by the entire microbial community contributes to periodontal disease, rather than specific pathogens alone.