NEET MDS Lessons
Periodontology
Pathogens Implicated in Periodontal Diseases
Periodontal diseases are associated with a variety of pathogenic microorganisms. Below is a list of key pathogens implicated in different forms of periodontal disease, along with their associations:
General Pathogens Associated with Periodontal Diseases
-
Actinobacillus actinomycetemcomitans:
- Strongly associated with destructive periodontal disease.
-
Porphyromonas gingivalis:
- A member of the "black pigmented Bacteroides group" and a significant contributor to periodontal disease.
-
Bacteroides forsythus:
- Associated with chronic periodontitis.
-
Spirochetes (Treponema denticola):
- Implicated in various periodontal conditions.
-
Prevotella intermedia/nigrescens:
- Also belongs to the "black pigmented Bacteroides group" and is associated with several forms of periodontal disease.
-
Fusobacterium nucleatum:
- Plays a role in the progression of periodontal disease.
-
Campylobacter rectus:
- These organisms include members of the new genus Wolinella and are associated with periodontal disease.
Principal Bacteria Associated with Specific Periodontal Diseases
-
Adult Periodontitis:
- Porphyromonas gingivalis
- Prevotella intermedia
- Bacteroides forsythus
- Campylobacter rectus
-
Refractory Periodontitis:
- Bacteroides forsythus
- Porphyromonas gingivalis
- Campylobacter rectus
- Prevotella intermedia
-
Localized Juvenile Periodontitis (LJP):
- Actinobacillus actinomycetemcomitans
- Capnocytophaga
-
Periodontitis in Juvenile Diabetes:
- Capnocytophaga
- Actinobacillus actinomycetemcomitans
-
Pregnancy Gingivitis:
- Prevotella intermedia
-
Acute Necrotizing Ulcerative Gingivitis (ANUG):
- Prevotella intermedia
- Intermediate-sized spirochetes
Dental Calculus
Dental calculus, also known as tartar, is a hard deposit that forms on teeth due to the mineralization of dental plaque. Understanding the composition and crystal forms of calculus is essential for dental professionals in diagnosing and managing periodontal disease.
Crystal Forms in Dental Calculus
-
Common Crystal Forms:
- Dental calculus typically contains two or more crystal forms. The
most frequently detected forms include:
- Hydroxyapatite:
- This is the primary mineral component of both enamel and calculus, constituting a significant portion of the calculus sample.
- Hydroxyapatite is a crystalline structure that provides strength and stability to the calculus.
- Octacalcium Phosphate:
- Detected in a high percentage of supragingival calculus samples (97% to 100%).
- This form is also a significant contributor to the bulk of calculus.
- Hydroxyapatite:
- Dental calculus typically contains two or more crystal forms. The
most frequently detected forms include:
-
Other Crystal Forms:
- Brushite:
- More commonly found in the mandibular anterior region of the mouth.
- Brushite is a less stable form of calcium phosphate and may indicate a younger calculus deposit.
- Magnesium Whitlockite:
- Typically found in the posterior areas of the mouth.
- This form may be associated with older calculus deposits and can indicate changes in the mineral composition over time.
- Brushite:
-
Variation with Age:
- The incidence and types of crystal forms present in calculus can vary with the age of the deposit.
- Younger calculus deposits may have a higher proportion of brushite, while older deposits may show a predominance of hydroxyapatite and magnesium whitlockite.
Clinical Significance
-
Understanding Calculus Formation:
- Knowledge of the crystal forms in calculus can help dental professionals understand the mineralization process and the conditions under which calculus forms.
-
Implications for Treatment:
- The composition of calculus can influence treatment strategies. For example, older calculus deposits may be more difficult to remove due to their hardness and mineral content.
-
Assessment of Periodontal Health:
- The presence and type of calculus can provide insights into a patient’s oral hygiene practices and periodontal health. Regular monitoring and removal of calculus are essential for preventing periodontal disease.
-
Research and Development:
- Understanding the mineral composition of calculus can aid in the development of new dental materials and treatments aimed at preventing calculus formation and promoting oral health.
Desquamative Gingivitis
- Characteristics: Desquamative gingivitis is characterized by intense erythema, desquamation, and ulceration of both free and attached gingiva.
- Associated Diseases:
- Lichen Planus
- Pemphigus
- Pemphigoid
- Linear IgA Disease
- Chronic Ulcerative Stomatitis
- Epidermolysis Bullosa
- Systemic Lupus Erythematosus (SLE)
- Dermatitis Herpetiformis
Epithelial Turnover Rates in Oral Tissues
Epithelial turnover is a critical process in maintaining the health and integrity of oral tissues. Understanding the turnover rates of different epithelial types in the oral cavity can provide insights into their regenerative capabilities and responses to injury or disease.
Turnover Rates of Oral Epithelial Tissues
-
Junctional Epithelium:
- Turnover Rate: 1-6 days
- Description:
- The junctional epithelium is a specialized epithelial tissue that forms the attachment between the gingiva and the tooth surface.
- Its rapid turnover rate is essential for maintaining a healthy seal around the tooth and for responding quickly to inflammatory changes or injury.
-
Palate, Tongue, and Cheeks:
- Turnover Rate: 5-6 days
- Description:
- The epithelial tissues of the hard palate, tongue, and buccal mucosa (cheeks) have a moderate turnover rate.
- This relatively quick turnover helps maintain the integrity of these surfaces, which are subject to mechanical stress and potential injury from food and other environmental factors.
-
Gingiva:
- Turnover Rate: 10-12 days
- Description:
- The gingival epithelium has a slower turnover rate compared to the junctional epithelium and the epithelium of the palate, tongue, and cheeks.
- This slower rate reflects the need for stability in the gingival tissue, which plays a crucial role in supporting the teeth and maintaining periodontal health.
Clinical Significance
-
Wound Healing:
- The rapid turnover of the junctional epithelium is particularly important in the context of periodontal health, as it allows for quick healing of any disruptions caused by inflammation or mechanical trauma.
-
Response to Disease:
- Understanding the turnover rates can help clinicians anticipate how quickly tissues may respond to treatment or how they may regenerate after surgical procedures.
-
Oral Health Maintenance:
- The varying turnover rates highlight the importance of maintaining good oral hygiene practices to support the health of these tissues, especially in areas with slower turnover rates like the gingiva.
Periodontal Bone Grafts
Bone grafting is a critical procedure in periodontal surgery, aimed at restoring lost bone and supporting the regeneration of periodontal tissues.
1. Bone Blend
Bone blend is a mixture of cortical or cancellous bone that is procured using a trephine or rongeurs, placed in an amalgam capsule, and triturated to achieve a slushy osseous mass. This technique allows for the creation of smaller particle sizes, which enhances resorption and replacement with host bone.
Particle Size: The ideal particle size for bone blend is approximately 210 x 105 micrometers.
Rationale: Smaller particle sizes improve the chances of resorption and integration with the host bone, making the graft more effective.
2. Types of Periodontal Bone Grafts
A. Autogenous Grafts
Autogenous grafts are harvested from the patient’s own body, providing the best compatibility and healing potential.
-
Cortical Bone Chips
- History: First used by Nabers and O'Leary in 1965.
- Characteristics: Composed of shavings of cortical bone removed during osteoplasty and ostectomy from intraoral sites.
- Challenges: Larger particle sizes can complicate placement and handling, and there is a potential for sequestration. This method has largely been replaced by autogenous osseous coagulum and bone blend.
-
Osseous Coagulum and Bone Blend
- Technique: Intraoral bone is obtained using high- or low-speed round burs and mixed with blood to form an osseous coagulum (Robinson, 1969).
- Advantages: Overcomes disadvantages of cortical bone chips, such as inability to aspirate during collection and variability in quality and quantity of collected bone.
- Applications: Used in various periodontal procedures to enhance healing and regeneration.
-
Intraoral Cancellous Bone and Marrow
- Sources: Healing bony wounds, extraction sockets, edentulous ridges, mandibular retromolar areas, and maxillary tuberosity.
- Applications: Provides a rich source of osteogenic cells and growth factors for bone regeneration.
-
Extraoral Cancellous Bone and Marrow
- Sources: Obtained from the anterior or posterior iliac crest.
- Advantages: Generally offers the greatest potential for new bone growth due to the abundance of cancellous bone and marrow.
B. Bone Allografts
Bone allografts are harvested from donors and can be classified into three main types:
-
Undermineralized Freeze-Dried Bone Allograft (FDBA)
- Introduction: Introduced in 1976 by Mellonig et al.
- Process: Freeze drying removes approximately 95% of the water from bone, preserving morphology, solubility, and chemical integrity while reducing antigenicity.
- Efficacy: FDBA combined with autogenous bone is more effective than FDBA alone, particularly in treating furcation involvements.
-
Demineralized (Decalcified) FDBA
- Mechanism: Demineralization enhances osteogenic potential by exposing bone morphogenetic proteins (BMPs) in the bone matrix.
- Osteoinduction vs. Osteoconduction: Demineralized grafts induce new bone formation (osteoinduction), while undermineralized allografts facilitate bone growth by providing a scaffold (osteoconduction).
-
Frozen Iliac Cancellous Bone and Marrow
- Usage: Used sparingly due to variability in outcomes and potential complications.
Comparison of Allografts and Alloplasts
- Clinical Outcomes: Both FDBA and DFDBA have been compared to porous particulate hydroxyapatite, showing little difference in post-treatment clinical parameters.
- Histological Healing: Grafts of DFDBA typically heal with regeneration of the periodontium, while synthetic bone grafts (alloplasts) heal by repair, which may not restore the original periodontal architecture.
Stippling of the Gingiva
-
Stippling refers to the textured surface of the gingiva that resembles the skin of an orange. This characteristic is best observed when the gingiva is dried.
-
Characteristics:
- Location:
- The attached gingiva is typically stippled, while the marginal gingiva is not.
- The central portion of the interdental gingiva may exhibit stippling, but its marginal borders are usually smooth.
- Surface Variation:
- Stippling is generally less prominent on the lingual surfaces compared to the facial surfaces and may be absent in some individuals.
- Age-Related Changes:
- Stippling is absent in infancy, begins to appear around 5 years of age, increases until adulthood, and may start to disappear in old age.
- Location:
Attached Gingiva
-
Definition: The attached gingiva is the portion of the gingiva that is firmly bound to the underlying alveolar bone and extends from the free gingival groove to the mucogingival junction, where it meets the alveolar mucosa.
-
Characteristics:
- Structure:
- The attached gingiva is classified as a mucoperiosteum, tightly bound to the underlying alveolar bone.
- Width:
- The width of the attached gingiva is greatest in the incisor
region, measuring approximately:
- 3.5 – 4.5 mm in the maxilla
- 3.3 – 3.9 mm in the mandible
- It is narrower in the posterior segments, measuring about:
- 1.9 mm in the maxillary first premolars
- 1.8 mm in the mandibular first premolars.
- The width of the attached gingiva is greatest in the incisor
region, measuring approximately:
- Histological Features:
- The attached gingiva is thick and keratinized (or parakeratinized) and is classified as masticatory mucosa.
- Masticatory mucosa is characterized by a keratinized epithelium and a thick lamina propria, providing resistance to mechanical forces.
- Structure:
Masticatory vs. Lining Mucosa
-
Masticatory Mucosa:
- Found in areas subject to high compression and friction, such as the gingiva and hard palate.
- Characterized by keratinized epithelium and a thick lamina propria, making it resistant to masticatory forces.
-
Lining Mucosa:
- Mobile, distensible, and non-keratinized.
- Found in areas such as the lips, cheeks, alveolus, floor of the mouth, ventral surface of the tongue, and soft palate.
-
Specialized Mucosa:
- Found on the dorsum of the tongue, adapted for specific functions such as taste.
Bone grafting is a critical procedure in periodontal and dental surgery, aimed at restoring lost bone and supporting the regeneration of periodontal tissues. Various materials can be used for bone grafting, each with unique properties and applications.
A. Osseous Coagulum
- Composition: Osseous coagulum is a mixture of bone dust and blood. It is created using small particles ground from cortical bone.
- Sources: Bone dust can be obtained from various
anatomical sites, including:
- Lingual ridge of the mandible
- Exostoses
- Edentulous ridges
- Bone distal to terminal teeth
- Application: This material is used in periodontal surgery to promote healing and regeneration of bone in areas affected by periodontal disease.
B. Bioactive Glass
- Composition: Bioactive glass consists of sodium and calcium salts, phosphates, and silicon dioxide.
- Function: It promotes bone regeneration by forming a bond with surrounding bone and stimulating cellular activity.
C. HTR Polymer
- Composition: HTR Polymer is a non-resorbable, microporous, biocompatible composite made from polymethyl methacrylate (PMMA) and polyhydroxymethacrylate.
- Application: This material is used in various dental and periodontal applications due to its biocompatibility and structural properties.
D. Other Bone Graft Materials
- Sclera: Used as a graft material due to its collagen content and biocompatibility.
- Cartilage: Can be used in certain grafting procedures, particularly in reconstructive surgery.
- Plaster of Paris: Occasionally used in bone grafting, though less common due to its non-biological nature.
- Calcium Phosphate Biomaterials: These materials are osteoconductive and promote bone healing.
- Coral-Derived Materials: Natural coral can be processed to create a scaffold for bone regeneration.