Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Periodontology

Localized Aggressive Periodontitis and Necrotizing Ulcerative Gingivitis

Localized Aggressive Periodontitis (LAP)

Localized aggressive periodontitis, previously known as localized juvenile periodontitis, is characterized by specific microbial profiles and clinical features.

  • Microbiota Composition:
    • The microbiota associated with LAP is predominantly composed of:
      • Gram-Negative, Capnophilic, and Anaerobic Rods.
    • Key Organisms:
      • Actinobacillus actinomycetemcomitans: The main organism involved in LAP.
      • Other significant organisms include:
        • Porphyromonas gingivalis
        • Eikenella corrodens
        • Campylobacter rectus
        • Bacteroides capillus
        • Spirochetes (various species).
    • Viral Associations:
      • Herpes viruses, including Epstein-Barr Virus-1 (EBV-1) and Human Cytomegalovirus (HCMV), have also been associated with LAP.

Necrotizing Ulcerative Gingivitis (NUG)

  • Microbial Profile:
    • NUG is characterized by high levels of:
      • Prevotella intermedia
      • Spirochetes (various species).
  • Clinical Features:
    • NUG presents with necrosis of the gingival tissue, pain, and ulceration, often accompanied by systemic symptoms.

Microbial Shifts in Periodontal Disease

When comparing the microbiota across different states of periodontal health, a distinct microbial shift can be identified as the disease progresses from health to gingivitis to periodontitis:

  1. From Gram-Positive to Gram-Negative:

    • Healthy gingival sites are predominantly colonized by gram-positive bacteria, while diseased sites show an increase in gram-negative bacteria.
  2. From Cocci to Rods (and Later to Spirochetes):

    • In health, cocci (spherical bacteria) are prevalent. As the disease progresses, there is a shift towards rod-shaped bacteria, and in advanced stages, spirochetes become more prominent.
  3. From Non-Motile to Motile Organisms:

    • Healthy sites are often dominated by non-motile bacteria, while motile organisms increase in number as periodontal disease develops.
  4. From Facultative Anaerobes to Obligate Anaerobes:

    • In health, facultative anaerobes (which can survive with or without oxygen) are common. In contrast, obligate anaerobes (which thrive in the absence of oxygen) become more prevalent in periodontal disease.
  5. From Fermenting to Proteolytic Species:

    • The microbial community shifts from fermentative bacteria, which primarily metabolize carbohydrates, to proteolytic species that break down proteins, contributing to tissue destruction and inflammation.

Acquired Pellicle in the Oral Cavity

The acquired pellicle is a crucial component of oral health, serving as the first line of defense in the oral cavity and playing a significant role in the initial stages of biofilm formation on tooth surfaces. Understanding the composition, formation, and function of the acquired pellicle is essential for dental professionals in managing oral health.

Composition of the Acquired Pellicle

  1. Definition:

    • The acquired pellicle is a thin, organic layer that coats all surfaces in the oral cavity, including both hard (tooth enamel) and soft tissues (gingiva, mucosa).
  2. Components:

    • The pellicle consists of more than 180 peptides, proteins, and glycoproteins, which include:
      • Keratins: Structural proteins that provide strength.
      • Mucins: Glycoproteins that contribute to the viscosity and protective properties of saliva.
      • Proline-rich proteins: Involved in the binding of calcium and phosphate.
      • Phosphoproteins: Such as statherin, which helps in maintaining calcium levels and preventing mineral loss.
      • Histidine-rich proteins: May play a role in buffering and mineralization.
    • These components function as adhesion sites (receptors) for bacteria, facilitating the initial colonization of tooth surfaces.

Formation and Maturation of the Acquired Pellicle

  1. Rapid Formation:

    • The salivary pellicle can be detected on clean enamel surfaces within 1 minute after exposure to saliva. This rapid formation is crucial for protecting the enamel and providing a substrate for bacterial adhesion.
  2. Equilibrium State:

    • By 2 hours, the pellicle reaches a state of equilibrium between adsorption (the process of molecules adhering to the surface) and detachment. This dynamic balance allows for the continuous exchange of molecules within the pellicle.
  3. Maturation:

    • Although the initial pellicle formation occurs quickly, further maturation can be observed over several hours. This maturation process involves the incorporation of additional salivary components and the establishment of a more complex structure.

Interaction with Bacteria

  1. Bacterial Adhesion:

    • Bacteria that adhere to tooth surfaces do not contact the enamel directly; instead, they interact with the acquired enamel pellicle. This interaction is critical for the formation of dental biofilms (plaque).
  2. Active Role of the Pellicle:

    • The acquired pellicle is not merely a passive adhesion matrix. Many proteins within the pellicle retain enzymatic activity when incorporated. Some of these enzymes include:
      • Peroxidases: Enzymes that can break down hydrogen peroxide and may have antimicrobial properties.
      • Lysozyme: An enzyme that can lyse bacterial cell walls, contributing to the antibacterial defense.
      • α-Amylase: An enzyme that breaks down starches and may influence the metabolism of adhering bacteria.

Clinical Significance

  1. Role in Oral Health:

    • The acquired pellicle plays a protective role by providing a barrier against acids and bacteria, helping to maintain the integrity of tooth enamel and soft tissues.
  2. Biofilm Formation:

    • Understanding the role of the pellicle in bacterial adhesion is essential for managing plaque-related diseases, such as dental caries and periodontal disease.
  3. Preventive Strategies:

    • Dental professionals can use knowledge of the acquired pellicle to develop preventive strategies, such as promoting saliva flow and maintaining good oral hygiene practices to minimize plaque accumulation.
  4. Therapeutic Applications:

    • The enzymatic activities of pellicle proteins can be targeted in the development of therapeutic agents aimed at enhancing oral health and preventing bacterial colonization.

Effects of Smoking on the Etiology and Pathogenesis of Periodontal Disease

Smoking is a significant risk factor for the development and progression of periodontal disease. It affects various aspects of periodontal health, including microbiology, immunology, and physiology. Understanding these effects is crucial for dental professionals in managing patients with periodontal disease, particularly those who smoke.

Etiologic Factors and the Impact of Smoking

  1. Microbiology

    • Plaque Accumulation:
      • Smoking does not affect the rate of plaque accumulation on teeth. This means that smokers may have similar levels of plaque as non-smokers.
    • Colonization of Periodontal Pathogens:
      • Smoking increases the colonization of shallow periodontal pockets by periodontal pathogens. This can lead to an increased risk of periodontal disease.
      • There are higher levels of periodontal pathogens found in deep periodontal pockets among smokers, contributing to the severity of periodontal disease.
  2. Immunology

    • Neutrophil Function:
      • Smoking alters neutrophil chemotaxis (the movement of neutrophils towards infection), phagocytosis (the process by which neutrophils engulf and destroy pathogens), and the oxidative burst (the rapid release of reactive oxygen species to kill bacteria).
    • Cytokine Levels:
      • Increased levels of pro-inflammatory cytokines such as Tumor Necrosis Factor-alpha (TNF-α) and Prostaglandin E2 (PGE2) are found in the gingival crevicular fluid (GCF) of smokers. These cytokines play a role in inflammation and tissue destruction.
    • Collagenase and Elastase Production:
      • There is an increase in neutrophil collagenase and elastase in GCF, which can contribute to the breakdown of connective tissue and exacerbate periodontal tissue destruction.
    • Monocyte Response:
      • Smoking enhances the production of PGE2 by monocytes in response to lipopolysaccharides (LPS), further promoting inflammation and tissue damage.
  3. Physiology

    • Gingival Blood Vessels:
      • Smoking leads to a decrease in gingival blood vessels, which can impair the delivery of immune cells and nutrients to the periodontal tissues, exacerbating inflammation.
    • Gingival Crevicular Fluid (GCF) Flow:
      • There is a reduction in GCF flow and bleeding on probing, even in the presence of increased inflammation. This can mask the clinical signs of periodontal disease, making diagnosis more challenging.
    • Subgingival Temperature:
      • Smoking is associated with a decrease in subgingival temperature, which may affect the metabolic activity of periodontal pathogens.
    • Recovery from Local Anesthesia:
      • Smokers may require a longer time to recover from local anesthesia, which can complicate dental procedures and patient management.

Clinical Implications

  1. Increased Risk of Periodontal Disease:

    • Smokers are at a higher risk for developing periodontal disease due to the combined effects of altered microbial colonization, impaired immune response, and physiological changes in the gingival tissues.
  2. Challenges in Diagnosis:

    • The reduced bleeding on probing and altered GCF flow in smokers can lead to underdiagnosis or misdiagnosis of periodontal disease. Dental professionals must be vigilant in assessing periodontal health in smokers.
  3. Treatment Considerations:

    • Smoking cessation should be a key component of periodontal treatment plans. Educating patients about the effects of smoking on periodontal health can motivate them to quit.
    • Treatment may need to be more aggressive in smokers due to the increased severity of periodontal disease and the altered healing response.
  4. Monitoring and Maintenance:

    • Regular monitoring of periodontal health is essential for smokers, as they may experience more rapid disease progression. Tailored maintenance programs should be implemented to address their specific needs.

Junctional Epithelium

The junctional epithelium (JE) is a critical component of the periodontal tissue, playing a vital role in the attachment of the gingiva to the tooth surface. Understanding its structure, function, and development is essential for comprehending periodontal health and disease.

Structure of the Junctional Epithelium

  1. Composition:

    • The junctional epithelium consists of a collar-like band of stratified squamous non-keratinized epithelium.
    • This type of epithelium is designed to provide a barrier while allowing for some flexibility and permeability.
  2. Layer Thickness:

    • In early life, the junctional epithelium is approximately 3-4 layers thick.
    • As a person ages, the number of epithelial layers can increase significantly, reaching 10 to 20 layers in older individuals.
    • This increase in thickness may be a response to various factors, including mechanical stress and inflammation.
  3. Length:

    • The length of the junctional epithelium typically ranges from 0.25 mm to 1.35 mm.
    • This length can vary based on individual anatomy and periodontal health.

Development of the Junctional Epithelium

  • The junctional epithelium is formed by the confluence of the oral epithelium and the reduced enamel epithelium during the process of tooth eruption.
  • This fusion is crucial for establishing the attachment of the gingiva to the tooth surface, creating a seal that helps protect the underlying periodontal tissues from microbial invasion.

Function of the Junctional Epithelium

  • Barrier Function: The junctional epithelium serves as a barrier between the oral cavity and the underlying periodontal tissues, helping to prevent the entry of pathogens.
  • Attachment: It provides a strong attachment to the tooth surface, which is essential for maintaining periodontal health.
  • Regenerative Capacity: The junctional epithelium has a high turnover rate, allowing it to regenerate quickly in response to injury or inflammation.

Clinical Relevance

  • Periodontal Disease: Changes in the structure and function of the junctional epithelium can be indicative of periodontal disease. For example, inflammation can lead to increased permeability and loss of attachment.
  • Healing and Repair: Understanding the properties of the junctional epithelium is important for developing effective treatments for periodontal disease and for managing healing after periodontal surgery.

Stippling of the Gingiva

  • Stippling refers to the textured surface of the gingiva that resembles the skin of an orange. This characteristic is best observed when the gingiva is dried.

  • Characteristics:

    • Location:
      • The attached gingiva is typically stippled, while the marginal gingiva is not.
      • The central portion of the interdental gingiva may exhibit stippling, but its marginal borders are usually smooth.
    • Surface Variation:
      • Stippling is generally less prominent on the lingual surfaces compared to the facial surfaces and may be absent in some individuals.
    • Age-Related Changes:
      • Stippling is absent in infancy, begins to appear around 5 years of age, increases until adulthood, and may start to disappear in old age.

Attached Gingiva

  • Definition: The attached gingiva is the portion of the gingiva that is firmly bound to the underlying alveolar bone and extends from the free gingival groove to the mucogingival junction, where it meets the alveolar mucosa.

  • Characteristics:

    • Structure:
      • The attached gingiva is classified as a mucoperiosteum, tightly bound to the underlying alveolar bone.
    • Width:
      • The width of the attached gingiva is greatest in the incisor region, measuring approximately:
        • 3.5 – 4.5 mm in the maxilla
        • 3.3 – 3.9 mm in the mandible
      • It is narrower in the posterior segments, measuring about:
        • 1.9 mm in the maxillary first premolars
        • 1.8 mm in the mandibular first premolars.
    • Histological Features:
      • The attached gingiva is thick and keratinized (or parakeratinized) and is classified as masticatory mucosa.
      • Masticatory mucosa is characterized by a keratinized epithelium and a thick lamina propria, providing resistance to mechanical forces.

Masticatory vs. Lining Mucosa

  • Masticatory Mucosa:

    • Found in areas subject to high compression and friction, such as the gingiva and hard palate.
    • Characterized by keratinized epithelium and a thick lamina propria, making it resistant to masticatory forces.
  • Lining Mucosa:

    • Mobile, distensible, and non-keratinized.
    • Found in areas such as the lips, cheeks, alveolus, floor of the mouth, ventral surface of the tongue, and soft palate.
  • Specialized Mucosa:

    • Found on the dorsum of the tongue, adapted for specific functions such as taste.

Necrotizing Ulcerative Gingivitis (NUG)

Necrotizing Ulcerative Gingivitis (NUG), also known as Vincent's disease or trench mouth, is a severe form of periodontal disease characterized by the sudden onset of symptoms and specific clinical features.

Etiology and Predisposing Factors

  • Sudden Onset: NUG is characterized by a rapid onset of symptoms, often following debilitating diseases or acute respiratory infections.
  • Lifestyle Factors: Changes in living habits, such as prolonged work without adequate rest, poor nutrition, tobacco use, and psychological stress, are frequently noted in patient histories .
  • Smoking: Smoking has been identified as a significant predisposing factor for NUG/NDP .
  • Immune Compromise: Conditions that compromise the immune system, such as poor oral hygiene, smoking, and emotional stress, are major contributors to the development of NUG .

Clinical Presentation

  • Symptoms: NUG presents with:
    • Punched-out, crater-like depressions at the crest of interdental papillae.
    • Marginal gingival involvement, with rare extension to attached gingiva and oral mucosa.
    • Grey, pseudomembranous slough covering the lesions.
    • Spontaneous bleeding upon slight stimulation of the gingiva.
    • Fetid odor and increased salivation.

Microbiology

  • Mixed Bacterial Infection: NUG is caused by a complex of anaerobic bacteria, often referred to as the fusospirochetal complex, which includes:
    • Treponema vincentii
    • Treponema denticola
    • Treponema macrodentium
    • Fusobacterium nucleatum
    • Prevotella intermedia
    • Porphyromonas gingivalis

Treatment

  1. Control of Acute Phase:

    • Clean the wound with an antibacterial agent.
    • Irrigate the lesion with warm water and 5% vol/vol hydrogen peroxide.
    • Prescribe oxygen-releasing mouthwash (e.g., hydrogen peroxide DPF, sodium perborate DPF) to be used thrice daily.
    • Administer oral metronidazole for 3 to 5 days. If sensitive to metronidazole, prescribe penicillin; if sensitive to both, consider erythromycin or clindamycin.
    • Use 2% chlorhexidine in select cases for a short duration.
  2. Management of Residual Condition:

    • Remove predisposing local factors (e.g., overhangs).
    • Perform supra- and subgingival scaling.
    • Consider gingivoplasty to correct any residual gingival deformities.

Dental Calculus

Dental calculus, also known as tartar, is a hard deposit that forms on teeth due to the mineralization of dental plaque. Understanding the composition and crystal forms of calculus is essential for dental professionals in diagnosing and managing periodontal disease.

Crystal Forms in Dental Calculus

  1. Common Crystal Forms:

    • Dental calculus typically contains two or more crystal forms. The most frequently detected forms include:
      • Hydroxyapatite:
        • This is the primary mineral component of both enamel and calculus, constituting a significant portion of the calculus sample.
        • Hydroxyapatite is a crystalline structure that provides strength and stability to the calculus.
      • Octacalcium Phosphate:
        • Detected in a high percentage of supragingival calculus samples (97% to 100%).
        • This form is also a significant contributor to the bulk of calculus.
  2. Other Crystal Forms:

    • Brushite:
      • More commonly found in the mandibular anterior region of the mouth.
      • Brushite is a less stable form of calcium phosphate and may indicate a younger calculus deposit.
    • Magnesium Whitlockite:
      • Typically found in the posterior areas of the mouth.
      • This form may be associated with older calculus deposits and can indicate changes in the mineral composition over time.
  3. Variation with Age:

    • The incidence and types of crystal forms present in calculus can vary with the age of the deposit.
    • Younger calculus deposits may have a higher proportion of brushite, while older deposits may show a predominance of hydroxyapatite and magnesium whitlockite.

Clinical Significance

  1. Understanding Calculus Formation:

    • Knowledge of the crystal forms in calculus can help dental professionals understand the mineralization process and the conditions under which calculus forms.
  2. Implications for Treatment:

    • The composition of calculus can influence treatment strategies. For example, older calculus deposits may be more difficult to remove due to their hardness and mineral content.
  3. Assessment of Periodontal Health:

    • The presence and type of calculus can provide insights into a patient’s oral hygiene practices and periodontal health. Regular monitoring and removal of calculus are essential for preventing periodontal disease.
  4. Research and Development:

    • Understanding the mineral composition of calculus can aid in the development of new dental materials and treatments aimed at preventing calculus formation and promoting oral health.

Explore by Exams