NEET MDS Lessons
Periodontology
Bacterial Properties Involved in Evasion of Host Defense Mechanisms
Bacteria have evolved various strategies to evade the host's immune defenses, allowing them to persist and cause disease. Understanding these mechanisms is crucial for developing effective treatments and preventive measures against bacterial infections, particularly in the context of periodontal disease. This lecture will explore the bacterial species involved, their properties, and the biological effects of these properties on host defense mechanisms.
Host Defense Mechanisms and Bacterial Evasion Strategies
-
Specific Antibody Evasion
- Bacterial Species:
- Porphyromonas gingivalis
- Prevotella intermedia
- Prevotella melaninogenica
- Capnocytophaga spp.
- Bacterial Property:
- IgA- and IgG-degrading proteases
- Biologic Effect:
- Degradation of specific antibodies, which impairs the host's ability to mount an effective immune response against these bacteria.
- Bacterial Species:
-
Evasion of Polymorphonuclear Leukocytes (PMNs)
- Bacterial Species:
- Aggregatibacter actinomycetemcomitans
- Fusobacterium nucleatum
- Porphyromonas gingivalis
- Treponema denticola
- Bacterial Properties:
- Leukotoxin: A toxin that can induce apoptosis in PMNs.
- Heat-sensitive surface protein: May interfere with immune recognition.
- Capsule: A protective layer that inhibits phagocytosis.
- Inhibition of superoxide production: Reduces the oxidative burst necessary for bacterial killing.
- Biologic Effects:
- Inhibition of PMN function, leading to decreased bacterial killing.
- Induction of apoptosis (programmed cell death) in PMNs, reducing the number of immune cells available to fight infection.
- Inhibition of phagocytosis, allowing bacteria to evade clearance.
- Bacterial Species:
-
Evasion of Lymphocytes
- Bacterial Species:
- Aggregatibacter actinomycetemcomitans
- Fusobacterium nucleatum
- Tannerella forsythia
- Prevotella intermedia
- Bacterial Properties:
- Leukotoxin: Induces apoptosis in lymphocytes.
- Cytolethal distending toxin: Affects cell cycle progression and induces cell death.
- Heat-sensitive surface protein: May interfere with immune recognition.
- Cytotoxin: Directly damages immune cells.
- Biologic Effects:
- Killing of mature B and T cells, leading to a weakened adaptive immune response.
- Nonlethal suppression of lymphocyte activity, impairing the immune response.
- Impairment of lymphocyte function by arresting the cell cycle, leading to decreased responses to antigens and mitogens.
- Induction of apoptosis in mononuclear cells and lymphocytes, further reducing immune capacity.
- Bacterial Species:
-
Inhibition of Interleukin-8 (IL-8) Production
- Bacterial Species:
- Porphyromonas gingivalis
- Bacterial Property:
- Inhibition of IL-8 production by epithelial cells.
- Biologic Effect:
- Impairment of PMN response to bacteria, leading to reduced recruitment and activation of neutrophils at the site of infection.
- Bacterial Species:
Gingivitis
Gingivitis is an inflammatory condition of the gingiva that can progress through several distinct stages. Understanding these stages is crucial for dental professionals in diagnosing and managing periodontal disease effectively. This lecture will outline the four stages of gingivitis, highlighting the key pathological changes that occur at each stage.
I. Initial Lesion
- Characteristics:
- Increased Permeability: The microvascular bed in the gingival tissues becomes more permeable, allowing for the passage of fluids and immune cells.
- Increased GCF Flow: There is an increase in the flow of gingival crevicular fluid (GCF), which is indicative of inflammation and immune response.
- PMN Cell Migration: The migration of
polymorphonuclear leukocytes (PMNs) is facilitated by various adhesion
molecules, including:
- Intercellular Cell Adhesion Molecule 1 (ICAM-1)
- E-selectin (ELAM-1) in the dentogingival vasculature.
- Clinical Implications: This stage marks the beginning of the inflammatory response, where the body attempts to combat the initial bacterial insult.
II. Early Lesion
-
Characteristics:
- Leukocyte Infiltration: There is significant infiltration of leukocytes, particularly lymphocytes, into the connective tissue of the junctional epithelium.
- Fibroblast Degeneration: Several fibroblasts within the lesion exhibit signs of degeneration, indicating tissue damage.
- Proliferation of Basal Cells: The basal cells of the junctional and sulcular epithelium begin to proliferate, which may be a response to the inflammatory process.
-
Clinical Implications: This stage represents a transition from initial inflammation to more pronounced tissue changes, with the potential for further progression if not managed.
III. Established Lesion
-
Characteristics:
- Predominance of Plasma Cells and B Lymphocytes: There is a marked increase in plasma cells and B lymphocytes, indicating a more advanced immune response.
- Increased Collagenolytic Activity: The activity of collagen-degrading enzymes increases, leading to the breakdown of collagen fibers in the connective tissue.
- B Cell Subclasses: The B cells present in the established lesion are predominantly of the IgG1 and IgG3 subclasses, which are important for the immune response.
-
Clinical Implications: This stage is characterized by chronic inflammation, and if left untreated, it can lead to further tissue destruction and the transition to advanced lesions.
IV. Advanced Lesion
-
Characteristics:
- Loss of Connective Tissue Attachment: There is significant loss of connective tissue attachment to the teeth, which can lead to periodontal pocket formation.
- Alveolar Bone Loss: Extensive damage occurs to the alveolar bone, contributing to the overall loss of periodontal support.
- Extensive Damage to Collagen Fibers: The collagen fibers in the gingival tissues are extensively damaged, further compromising the structural integrity of the gingiva.
- Predominance of Plasma Cells: Plasma cells remain predominant, indicating ongoing immune activity and inflammation.
-
Clinical Implications: This stage represents the transition from gingivitis to periodontitis, where irreversible damage can occur. Early intervention is critical to prevent further progression and loss of periodontal support.
Dental Plaque
Dental plaque is a biofilm that forms on the surfaces of teeth and is composed of a diverse community of microorganisms. The development of dental plaque occurs in stages, beginning with primary colonizers and progressing to secondary colonization and plaque maturation.
Primary Colonizers
- Timeframe:
- Acquired within a few hours after tooth cleaning or exposure.
- Characteristics:
- Predominantly gram-positive facultative microbes.
- Key Species:
- Actinomyces viscosus
- Streptococcus sanguis
- Adhesion Mechanism:
- Primary colonizers adhere to the tooth surface through specific adhesins.
- For example, A. viscosus possesses fimbriae that bind to proline-rich proteins in the dental pellicle, facilitating initial attachment.
Secondary Colonization and Plaque Maturation
- Microbial Composition:
- As plaque matures, it becomes predominantly populated by gram-negative anaerobic microorganisms.
- Key Species:
- Prevotella intermedia
- Prevotella loescheii
- Capnocytophaga spp.
- Fusobacterium nucleatum
- Porphyromonas gingivalis
- Coaggregation:
- Coaggregation refers to the ability of different species and genera of plaque microorganisms to adhere to one another.
- This process occurs primarily through highly specific stereochemical interactions of protein and carbohydrate molecules on cell surfaces, along with hydrophobic, electrostatic, and van der Waals forces.
Plaque Hypotheses
-
Specific Plaque Hypothesis:
- This hypothesis posits that only certain types of plaque are pathogenic.
- The pathogenicity of plaque depends on the presence or increase of specific microorganisms.
- It predicts that plaque harboring specific bacterial pathogens leads to periodontal disease due to the production of substances that mediate the destruction of host tissues.
-
Nonspecific Plaque Hypothesis:
- This hypothesis maintains that periodontal disease results from the overall activity of the entire plaque microflora.
- It suggests that the elaboration of noxious products by the entire microbial community contributes to periodontal disease, rather than specific pathogens alone.
Necrotizing Ulcerative Gingivitis (NUG)
Necrotizing Ulcerative Gingivitis (NUG), also known as Vincent's disease or trench mouth, is a severe form of periodontal disease characterized by the sudden onset of symptoms and specific clinical features.
Etiology and Predisposing Factors
- Sudden Onset: NUG is characterized by a rapid onset of symptoms, often following debilitating diseases or acute respiratory infections.
- Lifestyle Factors: Changes in living habits, such as prolonged work without adequate rest, poor nutrition, tobacco use, and psychological stress, are frequently noted in patient histories .
- Smoking: Smoking has been identified as a significant predisposing factor for NUG/NDP .
- Immune Compromise: Conditions that compromise the immune system, such as poor oral hygiene, smoking, and emotional stress, are major contributors to the development of NUG .
Clinical Presentation
- Symptoms: NUG presents with:
- Punched-out, crater-like depressions at the crest of interdental papillae.
- Marginal gingival involvement, with rare extension to attached gingiva and oral mucosa.
- Grey, pseudomembranous slough covering the lesions.
- Spontaneous bleeding upon slight stimulation of the gingiva.
- Fetid odor and increased salivation.
Microbiology
- Mixed Bacterial Infection: NUG is caused by a complex
of anaerobic bacteria, often referred to as the fusospirochetal complex,
which includes:
- Treponema vincentii
- Treponema denticola
- Treponema macrodentium
- Fusobacterium nucleatum
- Prevotella intermedia
- Porphyromonas gingivalis
Treatment
-
Control of Acute Phase:
- Clean the wound with an antibacterial agent.
- Irrigate the lesion with warm water and 5% vol/vol hydrogen peroxide.
- Prescribe oxygen-releasing mouthwash (e.g., hydrogen peroxide DPF, sodium perborate DPF) to be used thrice daily.
- Administer oral metronidazole for 3 to 5 days. If sensitive to metronidazole, prescribe penicillin; if sensitive to both, consider erythromycin or clindamycin.
- Use 2% chlorhexidine in select cases for a short duration.
-
Management of Residual Condition:
- Remove predisposing local factors (e.g., overhangs).
- Perform supra- and subgingival scaling.
- Consider gingivoplasty to correct any residual gingival deformities.
Gingival crevicular fluid is an inflammatory exudate found in the gingival sulcus. It plays a significant role in periodontal health and disease.
A. Characteristics of GCF
- Glucose Concentration: The glucose concentration in GCF is 3-4 times greater than that in serum, indicating increased metabolic activity in inflamed tissues.
- Protein Content: The total protein content of GCF is much less than that of serum, reflecting its role as an inflammatory exudate.
- Inflammatory Nature: GCF is present in clinically normal sulci due to the constant low-grade inflammation of the gingiva.
B. Drugs Excreted Through GCF
- Tetracyclines and Metronidazole: These antibiotics are known to be excreted through GCF, making them effective for localized periodontal therapy.
C. Collection Methods for GCF
GCF can be collected using various techniques, including:
- Absorbing Paper Strips/Blotter/Periopaper: These strips absorb fluid from the sulcus and are commonly used for GCF collection.
- Twisted Threads: Placing twisted threads around and into the sulcus can help collect GCF.
- Micropipettes: These can be used for precise collection of GCF in research settings.
- Intra-Crevicular Washings: Flushing the sulcus with a saline solution can help collect GCF for analysis.
Changes in Plaque pH After Sucrose Rinse
The pH of dental plaque is a critical factor in the development of dental caries and periodontal disease. Key findings from various studies that investigated the changes in plaque pH following carbohydrate rinses, particularly focusing on sucrose and glucose.
Key Findings from Studies
-
Monitoring Plaque pH Changes:
- A study reported that changes in plaque pH after a sucrose rinse were monitored using plaque sampling, antimony and glass electrodes, and telemetry.
- Results:
- The minimum pH at approximal sites (areas between teeth) was approximately 0.7 pH units lower than that on buccal surfaces (outer surfaces of the teeth).
- The pH at the approximal site remained below resting levels for over 120 minutes.
- The area under the pH response curves from approximal sites was five times greater than that from buccal surfaces, indicating a more significant and prolonged acidogenic response in interproximal areas.
-
Stephan's Early Studies (1935):
- Method: Colorimetric measurement of plaque pH suspended in water.
- Findings:
- The pH of 211 plaque samples ranged from 4.6 to 7.0.
- The mean pH value was found to be 5.9, indicating a generally acidic environment in dental plaque.
-
Stephan's Follow-Up Studies (1940):
- Method: Use of an antimony electrode to measure in situ plaque pH after rinsing with sugar solutions.
- Findings:
- A 10% solution of glucose or sucrose caused a rapid drop in plaque pH by about 2 units within 2 to 5 minutes, reaching values between 4.5 and 5.0.
- A 1% lactose solution lowered the pH by 0.3 units, while a 1% glucose solution caused a drop of 1.5 units.
- A 1% boiled starch solution resulted in a reduction of 1.5 pH units over 51 minutes.
- In all cases, the pH tended to return to initial values within approximately 2 hours.
-
Investigation of Proximal Cavities:
- Studies of actual proximal cavities opened mechanically showed that the lowest pH values ranged from 4.6 to 4.1.
- After rinsing with a 10% glucose or sucrose solution, the pH in the plaque dropped to between 4.5 and 5.0 within 2 to 5 minutes and gradually returned to baseline levels within 1 to 2 hours.
Implications
- The studies highlight the significant impact of carbohydrate exposure, particularly sucrose and glucose, on the pH of dental plaque.
- The rapid drop in pH following carbohydrate rinses indicates an acidogenic response from plaque microorganisms, which can contribute to enamel demineralization and caries development.
- The prolonged acidic environment in approximal sites suggests that these areas may be more susceptible to caries due to the slower recovery of pH levels.
Modified Widman Flap Procedure
The modified Widman flap procedure is a surgical technique used in periodontal therapy to treat periodontal pockets while preserving the surrounding tissues and promoting healing. This lecture will discuss the advantages and disadvantages of the modified Widman flap, its indications, and the procedural steps involved.
Advantages of the Modified Widman Flap Procedure
-
Intimate Postoperative Adaptation:
- The main advantage of the modified Widman flap procedure is the ability to establish a close adaptation of healthy collagenous connective tissues and normal epithelium to all tooth surfaces. This promotes better healing and integration of tissues post-surgery
-
Feasibility for Bone Implantation:
- The modified Widman flap procedure is advantageous over curettage, particularly when the implantation of bone and other substances is planned. This allows for better access and preparation of the surgical site for grafting .
-
Conservation of Bone and Optimal Coverage:
- Compared to conventional reverse bevel flap surgery, the modified
Widman flap conserves bone and provides optimal coverage of root
surfaces by soft tissues. This results in:
- A more aesthetically pleasing outcome.
- A favorable environment for oral hygiene.
- Potentially less root sensitivity and reduced risk of root caries.
- More effective pocket closure compared to pocket elimination procedures .
- Compared to conventional reverse bevel flap surgery, the modified
Widman flap conserves bone and provides optimal coverage of root
surfaces by soft tissues. This results in:
-
Minimized Gingival Recession:
- When reattachment or minimal gingival recession is desired, the modified Widman flap is preferred over subgingival curettage, making it a suitable choice for treating deeper pockets (greater than 5 mm) and other complex periodontal conditions.
Disadvantages of the Modified Widman Flap Procedure
- Interproximal Architecture:
- One apparent disadvantage is the potential for flat or concave interproximal architecture immediately following the removal of the surgical dressing, particularly in areas with interproximal bony craters. This can affect the aesthetic outcome and may require further management .
Indications for the Modified Widman Flap Procedure
- Deep Pockets: Pockets greater than 5 mm, especially in the anterior and buccal maxillary posterior regions.
- Intrabony Pockets and Craters: Effective for treating pockets with vertical bone loss.
- Furcation Involvement: Suitable for managing periodontal disease in multi-rooted teeth.
- Bone Grafts: Facilitates the placement of bone grafts during surgery.
- Severe Root Sensitivity: Indicated when root sensitivity is a significant concern.
Procedure Overview
-
Incisions and Flap Reflection:
- Vertical Incisions: Made to access the periodontal pocket.
- Crevicular Incision: A horizontal incision along the gingival margin.
- Horizontal Incision: Undermines and removes the collar of tissue around the teeth.
-
Conservative Debridement:
- Flap is reflected just beyond the alveolar crest.
- Careful removal of all plaque and calculus while preserving the root surface.
- Frequent sterile saline irrigation is used to maintain a clean surgical field.
-
Preservation of Proximal Bone Surface:
- The proximal bone surface is preserved and not curetted, allowing for better healing and adaptation of the flap.
- Exact flap adaptation is achieved with full coverage of the bone.
-
Suturing:
- Suturing is aimed at achieving primary union of the proximal flap projections, ensuring proper healing and tissue integration.
Postoperative Care
- Antibiotic Ointment and Periodontal Dressing: Traditionally, antibiotic ointment was applied over sutures, and a periodontal dressing was placed. However, these practices are often omitted today.
- Current Recommendations: Patients are advised not to disturb the surgical area and to use a chlorhexidine mouth rinse every 12 hours for effective plaque control and to promote healing.
--------------
Neutrophil Disorders Associated with Periodontal Diseases
Neutrophils play a crucial role in the immune response, particularly in combating infections, including those associated with periodontal diseases. Various neutrophil disorders can significantly impact periodontal health, leading to increased susceptibility to periodontal diseases. This lecture will explore the relationship between neutrophil disorders and specific periodontal diseases.
Neutrophil Disorders
-
Diabetes Mellitus
- Description: A metabolic disorder characterized by high blood sugar levels due to insulin resistance or deficiency.
- Impact on Neutrophils: Diabetes can impair neutrophil function, including chemotaxis, phagocytosis, and the oxidative burst, leading to an increased risk of periodontal infections.
-
Papillon-Lefevre Syndrome
- Description: A rare genetic disorder characterized by palmoplantar keratoderma and severe periodontitis.
- Impact on Neutrophils: Patients exhibit neutrophil dysfunction, leading to early onset and rapid progression of periodontal disease.
-
Down’s Syndrome
- Description: A genetic disorder caused by the presence of an extra chromosome 21, leading to various developmental and health issues.
- Impact on Neutrophils: Individuals with Down’s syndrome often have impaired neutrophil function, which contributes to an increased prevalence of periodontal disease.
-
Chediak-Higashi Syndrome
- Description: A rare genetic disorder characterized by immunodeficiency, partial oculocutaneous albinism, and neurological problems.
- Impact on Neutrophils: This syndrome results in defective neutrophil chemotaxis and phagocytosis, leading to increased susceptibility to infections, including periodontal diseases.
-
Drug-Induced Agranulocytosis
- Description: A condition characterized by a dangerously low level of neutrophils due to certain medications.
- Impact on Neutrophils: The reduction in neutrophil count compromises the immune response, increasing the risk of periodontal infections.
-
Cyclic Neutropenia
- Description: A rare genetic disorder characterized by recurrent episodes of neutropenia (low neutrophil count) occurring every 21 days.
- Impact on Neutrophils: During neutropenic episodes, patients are at a heightened risk for infections, including periodontal disease.