Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Periodontology

Sutures for Periodontal Flaps

Suturing is a critical aspect of periodontal surgery, particularly when managing periodontal flaps. The choice of suture material can significantly influence healing, tissue adaptation, and overall surgical outcomes.

1. Nonabsorbable Sutures

Nonabsorbable sutures are designed to remain in the tissue until they are manually removed. They are often used in situations where long-term support is needed.

A. Types of Nonabsorbable Sutures

  1. Silk (Braided)

    • Characteristics:
      • Excellent handling properties and knot security.
      • Provides good tissue approximation.
    • Applications: Commonly used in periodontal surgeries due to its ease of use and reliability.
  2. Nylon (Monofilament) (Ethilon)

    • Characteristics:
      • Strong and resistant to stretching.
      • Less tissue reactivity compared to silk.
    • Applications: Ideal for delicate tissues and areas requiring minimal tissue trauma.
  3. ePTFE (Monofilament) (Gore-Tex)

    • Characteristics:
      • Biocompatible and non-reactive.
      • Excellent tensile strength and flexibility.
    • Applications: Often used in guided tissue regeneration procedures and in areas where long-term support is needed.
  4. Polyester (Braided) (Ethibond)

    • Characteristics:
      • High tensile strength and good knot security.
      • Less pliable than silk.
    • Applications: Used in situations requiring strong sutures, such as in flap stabilization.

2. Absorbable Sutures

Absorbable sutures are designed to be broken down by the body over time, eliminating the need for removal. They are often used in periodontal surgeries where temporary support is sufficient.

A. Types of Absorbable Sutures

  1. Surgical Gut

    • Plain Gut (Monofilament)

      • Absorption Time: Approximately 30 days.
      • Characteristics: Made from sheep or cow intestines; provides good tensile strength initially but loses strength quickly.
      • Applications: Suitable for soft tissue approximation where rapid absorption is desired.
    • Chromic Gut (Monofilament)

      • Absorption Time: Approximately 45 to 60 days.
      • Characteristics: Treated with chromium salts to delay absorption; retains strength longer than plain gut.
      • Applications: Used in areas where a longer healing time is expected.
  2. Synthetic Absorbable Sutures

    • Polyglycolic Acid (Braided) (Vicryl, Ethicon)

      • Absorption Time: Approximately 16 to 20 days.
      • Characteristics: Provides good tensile strength and is absorbed predictably.
      • Applications: Commonly used in periodontal and oral surgeries due to its handling properties.
    • Dexon (Davis & Geck)

      • Characteristics: Similar to Vicryl; made from polyglycolic acid.
      • Applications: Used in soft tissue approximation and ligation.
    • Polyglycaprone (Monofilament) (Maxon)

      • Absorption Time: Similar to Vicryl.
      • Characteristics: Offers excellent tensile strength and is absorbed more slowly than other synthetic options.
      • Applications: Ideal for areas requiring longer support during healing.

Acquired Pellicle in the Oral Cavity

The acquired pellicle is a crucial component of oral health, serving as the first line of defense in the oral cavity and playing a significant role in the initial stages of biofilm formation on tooth surfaces. Understanding the composition, formation, and function of the acquired pellicle is essential for dental professionals in managing oral health.

Composition of the Acquired Pellicle

  1. Definition:

    • The acquired pellicle is a thin, organic layer that coats all surfaces in the oral cavity, including both hard (tooth enamel) and soft tissues (gingiva, mucosa).
  2. Components:

    • The pellicle consists of more than 180 peptides, proteins, and glycoproteins, which include:
      • Keratins: Structural proteins that provide strength.
      • Mucins: Glycoproteins that contribute to the viscosity and protective properties of saliva.
      • Proline-rich proteins: Involved in the binding of calcium and phosphate.
      • Phosphoproteins: Such as statherin, which helps in maintaining calcium levels and preventing mineral loss.
      • Histidine-rich proteins: May play a role in buffering and mineralization.
    • These components function as adhesion sites (receptors) for bacteria, facilitating the initial colonization of tooth surfaces.

Formation and Maturation of the Acquired Pellicle

  1. Rapid Formation:

    • The salivary pellicle can be detected on clean enamel surfaces within 1 minute after exposure to saliva. This rapid formation is crucial for protecting the enamel and providing a substrate for bacterial adhesion.
  2. Equilibrium State:

    • By 2 hours, the pellicle reaches a state of equilibrium between adsorption (the process of molecules adhering to the surface) and detachment. This dynamic balance allows for the continuous exchange of molecules within the pellicle.
  3. Maturation:

    • Although the initial pellicle formation occurs quickly, further maturation can be observed over several hours. This maturation process involves the incorporation of additional salivary components and the establishment of a more complex structure.

Interaction with Bacteria

  1. Bacterial Adhesion:

    • Bacteria that adhere to tooth surfaces do not contact the enamel directly; instead, they interact with the acquired enamel pellicle. This interaction is critical for the formation of dental biofilms (plaque).
  2. Active Role of the Pellicle:

    • The acquired pellicle is not merely a passive adhesion matrix. Many proteins within the pellicle retain enzymatic activity when incorporated. Some of these enzymes include:
      • Peroxidases: Enzymes that can break down hydrogen peroxide and may have antimicrobial properties.
      • Lysozyme: An enzyme that can lyse bacterial cell walls, contributing to the antibacterial defense.
      • α-Amylase: An enzyme that breaks down starches and may influence the metabolism of adhering bacteria.

Clinical Significance

  1. Role in Oral Health:

    • The acquired pellicle plays a protective role by providing a barrier against acids and bacteria, helping to maintain the integrity of tooth enamel and soft tissues.
  2. Biofilm Formation:

    • Understanding the role of the pellicle in bacterial adhesion is essential for managing plaque-related diseases, such as dental caries and periodontal disease.
  3. Preventive Strategies:

    • Dental professionals can use knowledge of the acquired pellicle to develop preventive strategies, such as promoting saliva flow and maintaining good oral hygiene practices to minimize plaque accumulation.
  4. Therapeutic Applications:

    • The enzymatic activities of pellicle proteins can be targeted in the development of therapeutic agents aimed at enhancing oral health and preventing bacterial colonization.

Components of Gingival Crevicular Fluid (GCF) and Matrix Metalloproteinases (MMPs)

Gingival crevicular fluid (GCF) is a serum-like fluid found in the gingival sulcus that plays a significant role in periodontal health and disease. Understanding its composition, particularly glucose and protein content, as well as the role of matrix metalloproteinases (MMPs) in tissue remodeling, is essential for dental professionals.

Composition of Gingival Crevicular Fluid (GCF)

  1. Glucose and Hexosamines:

    • GCF contains compounds such as glucose, hexosamines, and hexuronic acid.
    • Glucose Levels:
      • Blood glucose levels do not correlate with GCF glucose levels; in fact, glucose concentration in GCF is three to four times greater than that in serum.
      • This elevated glucose level is interpreted as a result of the metabolic activity of adjacent tissues and the influence of local microbial flora.
  2. Protein Content:

    • The total protein content of GCF is significantly less than that of serum.
    • This difference in protein concentration reflects the unique environment of the gingival sulcus and the specific functions of GCF in periodontal health.

Matrix Metalloproteinases (MMPs)

  1. Definition and Function:

    • MMPs are a family of proteolytic enzymes that degrade extracellular matrix molecules, including collagen, gelatin, and elastin.
    • They are produced by various cell types, including:
      • Neutrophils
      • Macrophages
      • Fibroblasts
      • Epithelial cells
      • Osteoblasts and osteoclasts
  2. Classification:

    • MMPs are classified based on their substrate specificity, although it is now recognized that many MMPs can degrade multiple substrates. The classification includes:
      • Collagenases: e.g., MMP-1 and MMP-8 (break down collagen)
      • Gelatinases: Type IV collagenases
      • Stromelysins
      • Matrilysins
      • Membrane-type metalloproteinases
      • Others
  3. Activation and Inhibition:

    • MMPs are secreted in an inactive form (latent) and require proteolytic cleavage for activation. This activation is facilitated by proteases such as cathepsin G produced by neutrophils.
    • Inhibitors: MMPs are regulated by proteinase inhibitors, which possess anti-inflammatory properties. Key inhibitors include:
      • Serum Inhibitors:
        • α1-antitrypsin
        • α2-macroglobulin (produced by the liver, inactivates various proteinases)
      • Tissue Inhibitors:
        • Tissue inhibitors of metalloproteinases (TIMPs), with TIMP-1 being particularly important in periodontal disease.
    • Antibiotic Inhibition: MMPs can also be inhibited by tetracycline antibiotics, leading to the development of sub-antimicrobial formulations of doxycycline as a systemic adjunctive treatment for periodontitis, exploiting its anti-MMP properties.

Merkel Cells

  1. Location and Function:
    • Merkel cells are located in the deeper layers of the epithelium and are associated with nerve endings.
    • They are connected to adjacent cells by desmosomes and are identified as tactile receptors.
    • These cells play a role in the sensation of touch and pressure, contributing to the sensory functions of the oral mucosa.

Clinical Implications

  1. GCF Analysis:

    • The composition of GCF, including glucose and protein levels, can provide insights into the inflammatory status of the periodontal tissues and the presence of periodontal disease.
  2. Role of MMPs in Periodontal Disease:

    • MMPs are involved in the remodeling of periodontal tissues during inflammation and disease progression. Understanding their regulation and activity is crucial for developing therapeutic strategies.
  3. Therapeutic Applications:

    • The use of sub-antimicrobial doxycycline as an adjunctive treatment for periodontitis highlights the importance of MMP inhibition in managing periodontal disease.
  4. Sensory Function:

    • The presence of Merkel cells in the gingival epithelium underscores the importance of sensory feedback in maintaining oral health and function.

 Naber’s Probe and Furcation Involvement

Furcation involvement is a critical aspect of periodontal disease that affects the prognosis of teeth with multiple roots. Naber’s probe is a specialized instrument designed to assess furcation areas, allowing clinicians to determine the extent of periodontal attachment loss and the condition of the furcation. This lecture will cover the use of Naber’s probe, the classification of furcation involvement, and the clinical significance of these classifications.

Naber’s Probe

  • Description: Naber’s probe is a curved, blunt-ended instrument specifically designed for probing furcation areas. Its unique shape allows for horizontal probing, which is essential for accurately assessing the anatomy of multi-rooted teeth.

  • Usage: The probe is inserted horizontally into the furcation area to evaluate the extent of periodontal involvement. The clinician can feel the anatomical fluting between the roots, which aids in determining the classification of furcation involvement.

Classification of Furcation Involvement

Furcation involvement is classified into four main classes using Naber’s probe:

  1. Class I:

    • Description: The furcation can be probed to a depth of 3 mm.
    • Clinical Findings: The probe can feel the anatomical fluting between the roots, but it cannot engage the roof of the furcation.
    • Significance: Indicates early furcation involvement with minimal attachment loss.
  2. Class II:

    • Description: The furcation can be probed to a depth greater than 3 mm, but not through and through.
    • Clinical Findings: This class represents a range between Class I and Class III, where there is partial loss of attachment but not complete penetration through the furcation.
    • Significance: Indicates moderate furcation involvement that may require intervention.
  3. Class III:

    • Description: The furcation can be completely probed through and through.
    • Clinical Findings: The probe passes from one furcation to the other, indicating significant loss of periodontal support.
    • Significance: Represents advanced furcation involvement, often associated with a poor prognosis for the affected tooth.
  4. Class III+:

    • Description: The probe can go halfway across the tooth.
    • Clinical Findings: Similar to Class III, but with partial obstruction or remaining tissue.
    • Significance: Indicates severe furcation involvement with a significant loss of attachment.
  5. Class IV:

    • Description: Clinically, the examiner can see through the furcation.
    • Clinical Findings: There is complete loss of tissue covering the furcation, making it visible upon examination.
    • Significance: Indicates the most severe form of furcation involvement, often leading to tooth mobility and extraction.

Measurement Technique

  • Measurement Reference: Measurements are taken from an imaginary tangent connecting the prominences of the root surfaces of both roots. This provides a consistent reference point for assessing the depth of furcation involvement.

Clinical Significance

  • Prognosis: The classification of furcation involvement is crucial for determining the prognosis of multi-rooted teeth. Higher classes of furcation involvement generally indicate a poorer prognosis and may necessitate more aggressive treatment strategies.

  • Treatment Planning: Understanding the extent of furcation involvement helps clinicians develop appropriate treatment plans, which may include scaling and root planing, surgical intervention, or extraction.

  • Monitoring: Regular assessment of furcation involvement using Naber’s probe can help monitor disease progression and the effectiveness of periodontal therapy.

Flossing Technique

Flossing is an essential part of oral hygiene that helps remove plaque and food particles from between the teeth and along the gumline, areas that toothbrushes may not effectively clean. Proper flossing technique is crucial for maintaining gum health and preventing cavities.

Flossing Technique

  1. Preparation:

    • Length of Floss: Take 12 to 18 inches of dental floss. This length allows for adequate maneuverability and ensures that you can use a clean section of floss for each tooth.
    • Grasping the Floss: Hold the floss taut between your hands, leaving a couple of inches of floss between your fingers. This tension helps control the floss as you maneuver it between your teeth.
  2. Inserting the Floss:

    • Slip Between Teeth: Gently slide the floss between your teeth. Be careful not to snap the floss, as this can cause trauma to the gums.
    • Positioning: Insert the floss into the area between your teeth and gums as far as it will comfortably go, ensuring that you reach the gumline.
  3. Flossing Motion:

    • Vertical Strokes: Use 8 to 10 vertical strokes with the floss to dislodge food particles and plaque. Move the floss up and down against the sides of each tooth, making sure to clean both the front and back surfaces.
    • C-Shaped Motion: For optimal cleaning, wrap the floss around the tooth in a C-shape and gently slide it beneath the gumline.
  4. Frequency:

    • Daily Flossing: Aim to floss at least once a day. Consistency is key to maintaining good oral hygiene.
    • Best Time to Floss: The most important time to floss is before going to bed, as this helps remove debris and plaque that can accumulate throughout the day.
  5. Flossing and Brushing:

    • Order of Operations: Flossing can be done either before or after brushing your teeth. Both methods are effective, so choose the one that fits best into your routine.

Platelet-Derived Growth Factor (PDGF)

Platelet-Derived Growth Factor (PDGF) is a crucial glycoprotein involved in various biological processes, particularly in wound healing and tissue repair. Understanding its role and mechanisms can provide insights into its applications in regenerative medicine and periodontal therapy.

Overview of PDGF

  1. Definition:

    • PDGF is a glycoprotein that plays a significant role in cell growth, proliferation, and differentiation.
  2. Source:

    • PDGF is carried in the alpha granules of platelets and is released during the process of blood clotting.
  3. Discovery:

    • It was one of the first growth factors to be described in scientific literature.
    • Originally isolated from platelets, PDGF was found to exhibit mitogenic activity specifically in smooth muscle cells.

Functions of PDGF

  1. Mitogenic Activity:

    • PDGF stimulates the proliferation of various cell types, including:
      • Smooth muscle cells
      • Fibroblasts
      • Endothelial cells
    • This mitogenic activity is essential for tissue repair and regeneration.
  2. Role in Wound Healing:

    • PDGF is released at the site of injury and plays a critical role in:
      • Promoting cell migration to the wound site.
      • Stimulating the formation of new blood vessels (angiogenesis).
      • Enhancing the synthesis of extracellular matrix components, which are vital for tissue structure and integrity.
  3. Involvement in Periodontal Healing:

    • In periodontal therapy, PDGF can be utilized to enhance healing in periodontal defects and promote regeneration of periodontal tissues.
    • It has been studied for its potential in guided tissue regeneration (GTR) and in the treatment of periodontal disease.

Clinical Applications

  1. Regenerative Medicine:

    • PDGF is being explored in various regenerative medicine applications, including:
      • Bone regeneration
      • Soft tissue healing
      • Treatment of chronic wounds
  2. Periodontal Therapy:

    • PDGF has been incorporated into certain periodontal treatment modalities to enhance healing and regeneration of periodontal tissues.
    • It can be used in conjunction with graft materials to improve outcomes in periodontal surgery.

Aggressive periodontitis (AP) is a multifactorial, severe, and rapidly progressive form of periodontitis that primarily affects younger patients. It is characterized by a unique set of clinical and microbiological features that distinguish it from other forms of periodontal disease.

Key Characteristics

  • Rapid Progression: AP is marked by a swift deterioration of periodontal tissues.
  • Age Group: Primarily affects adolescents and young adults, but can occur at any age.
  • Multifactorial Etiology: Involves a combination of microbiological, immunological, genetic, and environmental factors.

Other Findings

  • Presence of Aggregatibacter actinomycetemcomitans (A.a.) in diseased sites.
  • Abnormal host responses, including impaired phagocytosis and chemotaxis.
  • Hyperresponsive macrophages leading to exaggerated inflammatory responses.
  • The disease may exhibit self-arresting tendencies in some cases.

Classification

Aggressive periodontitis can be classified into two main types:

  1. Localized Aggressive Periodontitis (LAP): Typically affects the permanent molars and incisors, often with localized attachment loss.
  2. Generalized Aggressive Periodontitis (GAP): Involves more widespread periodontal tissue destruction.

Risk Factors

Microbiological Factors

  • Aggregatibacter actinomycetemcomitans: A primary pathogen associated with LAP, producing a potent leukotoxin that kills neutrophils.
  • Different strains of A.a. produce varying levels of leukotoxin, with highly toxic strains more prevalent in affected individuals.

Immunological Factors

  • Human Leukocyte Antigens (HLAs): HLA-A9 and B-15 are candidate markers for aggressive periodontitis.
  • Defective neutrophil function leads to impaired chemotaxis and phagocytosis.
  • Hyper-responsive macrophage phenotype, characterized by elevated levels of PGE2 and IL-1β, may contribute to connective tissue breakdown and bone loss.

Genetic Factors

  • Familial clustering of neutrophil abnormalities suggests a genetic predisposition.
  • Genetic control of antibody responses to A.a., with variations in the ability to produce protective IgG2 antibodies.

Environmental Factors

  • Smoking is a significant risk factor, with smokers experiencing more severe periodontal destruction compared to non-smokers.

Treatment Approaches

General Considerations

  • Treatment strategies depend on the type and extent of periodontal destruction.
  • GAP typically has a poorer prognosis compared to LAP, as it is less likely to enter spontaneous remission.

Conventional Periodontal Therapy

  • Patient Education: Informing patients about the disease and its implications.
  • Oral Hygiene Instructions: Reinforcing proper oral hygiene practices.
  • Scaling and Root Planing: Removal of plaque and calculus to control local factors.

Surgical Resection Therapy

  • Aimed at reducing or eliminating pocket depth.
  • Contraindicated in cases of severe horizontal bone loss due to the risk of increased tooth mobility.

Regenerative Therapy

  • Potential for regeneration is promising in AP cases.
  • Techniques include open flap surgical debridement, root surface conditioning with tetracycline, and the use of allogenic bone grafts.
  • Recent advances involve the use of enamel matrix proteins to promote cementum regeneration and new attachment.

Antimicrobial Therapy

  • Often required as adjunctive treatment to eliminate A.a. from periodontal tissues.
  • Tetracycline: Administered in various regimens to concentrate in periodontal tissues and inhibit A.a. growth.
  • Combination Therapy: Metronidazole combined with amoxicillin has shown efficacy alongside periodontal therapy.
  • Doxycycline: Used at a dose of 100 mg/day.
  • Chlorhexidine (CHX): Irrigation and home rinsing to control bacterial load.

Host Modulation

  • Involves the use of sub-antimicrobial dose doxycycline (SDD) to prevent periodontal attachment loss by modulating the activity of matrix metalloproteinases (MMPs), particularly collagenase and gelatinase.

Explore by Exams