NEET MDS Lessons
Periodontology
Localized Aggressive Periodontitis and Necrotizing Ulcerative Gingivitis
Localized Aggressive Periodontitis (LAP)
Localized aggressive periodontitis, previously known as localized juvenile periodontitis, is characterized by specific microbial profiles and clinical features.
- Microbiota Composition:
- The microbiota associated with LAP is predominantly composed of:
- Gram-Negative, Capnophilic, and Anaerobic Rods.
- Key Organisms:
- Actinobacillus actinomycetemcomitans: The main organism involved in LAP.
- Other significant organisms include:
- Porphyromonas gingivalis
- Eikenella corrodens
- Campylobacter rectus
- Bacteroides capillus
- Spirochetes (various species).
- Viral Associations:
- Herpes viruses, including Epstein-Barr Virus-1 (EBV-1) and Human Cytomegalovirus (HCMV), have also been associated with LAP.
- The microbiota associated with LAP is predominantly composed of:
Necrotizing Ulcerative Gingivitis (NUG)
- Microbial Profile:
- NUG is characterized by high levels of:
- Prevotella intermedia
- Spirochetes (various species).
- NUG is characterized by high levels of:
- Clinical Features:
- NUG presents with necrosis of the gingival tissue, pain, and ulceration, often accompanied by systemic symptoms.
Microbial Shifts in Periodontal Disease
When comparing the microbiota across different states of periodontal health, a distinct microbial shift can be identified as the disease progresses from health to gingivitis to periodontitis:
-
From Gram-Positive to Gram-Negative:
- Healthy gingival sites are predominantly colonized by gram-positive bacteria, while diseased sites show an increase in gram-negative bacteria.
-
From Cocci to Rods (and Later to Spirochetes):
- In health, cocci (spherical bacteria) are prevalent. As the disease progresses, there is a shift towards rod-shaped bacteria, and in advanced stages, spirochetes become more prominent.
-
From Non-Motile to Motile Organisms:
- Healthy sites are often dominated by non-motile bacteria, while motile organisms increase in number as periodontal disease develops.
-
From Facultative Anaerobes to Obligate Anaerobes:
- In health, facultative anaerobes (which can survive with or without oxygen) are common. In contrast, obligate anaerobes (which thrive in the absence of oxygen) become more prevalent in periodontal disease.
-
From Fermenting to Proteolytic Species:
- The microbial community shifts from fermentative bacteria, which primarily metabolize carbohydrates, to proteolytic species that break down proteins, contributing to tissue destruction and inflammation.
Ecological Succession of Biofilm in Dental Plaque
Overview of Biofilm Formation
Biofilm formation on tooth surfaces is a dynamic process characterized by ecological succession, where microbial communities evolve over time. This process transitions from an early aerobic environment dominated by gram-positive facultative species to a later stage characterized by a highly oxygen-deprived environment where gram-negative anaerobic microorganisms predominate.
Stages of Biofilm Development
-
Initial Colonization:
- Environment: The initial phase occurs in an aerobic environment.
- Primary Colonizers:
- The first bacteria to colonize the pellicle-coated tooth surface are predominantly gram-positive facultative microorganisms.
- Key Species:
- Actinomyces viscosus
- Streptococcus sanguis
- Characteristics:
- These bacteria can thrive in the presence of oxygen and play a crucial role in the establishment of the biofilm.
-
Secondary Colonization:
- Environment: As the biofilm matures, the environment becomes increasingly anaerobic due to the metabolic activities of the initial colonizers.
- Secondary Colonizers:
- These microorganisms do not initially colonize clean tooth surfaces but adhere to the existing bacterial cells in the plaque mass.
- Key Species:
- Prevotella intermedia
- Prevotella loescheii
- Capnocytophaga spp.
- Fusobacterium nucleatum
- Porphyromonas gingivalis
- Coaggregation:
- Secondary colonizers adhere to primary colonizers through a process known as coaggregation, which involves specific interactions between bacterial cells.
-
Coaggregation Examples:
- Coaggregation is a critical mechanism that facilitates the establishment of complex microbial communities within the biofilm.
- Well-Known Examples:
- Fusobacterium nucleatum with Streptococcus sanguis
- Prevotella loescheii with Actinomyces viscosus
- Capnocytophaga ochracea with Actinomyces viscosus
Implications of Ecological Succession
- Microbial Diversity: The transition from gram-positive to gram-negative organisms reflects an increase in microbial diversity and complexity within the biofilm.
- Pathogenic Potential: The accumulation of anaerobic gram-negative bacteria is associated with the development of periodontal diseases, as these organisms can produce virulence factors that contribute to tissue destruction and inflammation.
- Biofilm Stability: The interactions between different bacterial species through coaggregation enhance the stability and resilience of the biofilm, making it more challenging to remove through mechanical cleaning.
-----------------------------------------------
Subgingival and Supragingival Calculus
Overview of Calculus Formation
Calculus, or tartar, is a hardened form of dental plaque that can form on both supragingival (above the gum line) and subgingival (below the gum line) surfaces. Understanding the differences between these two types of calculus is essential for effective periodontal disease management.
Subgingival Calculus
-
Color and Composition:
- Appearance: Subgingival calculus is typically dark green or dark brown in color.
- Causes of Color:
- The dark color is likely due to the presence of matrix components that differ from those found in supragingival calculus.
- It is influenced by iron heme pigments that are associated with the bleeding of inflamed gingiva, reflecting the inflammatory state of the periodontal tissues.
-
Formation Factors:
- Matrix Components: The subgingival calculus matrix contains blood products, which contribute to its darker coloration.
- Bacterial Environment: The subgingival environment is typically more anaerobic and harbors different bacterial species compared to supragingival calculus.
Supragingival Calculus
-
Formation Factors:
- Dependence on Plaque and Saliva:
- The degree of supragingival calculus formation is primarily influenced by the amount of bacterial plaque present and the secretion of salivary glands.
- Increased plaque accumulation leads to greater calculus formation.
- Dependence on Plaque and Saliva:
-
Inorganic Components:
- Source: The inorganic components of supragingival calculus are mainly derived from saliva.
- Composition: These components include minerals such as calcium and phosphate, which contribute to the calcification process of plaque.
Comparison of Inorganic Components
-
Supragingival Calculus:
- Inorganic components are primarily sourced from saliva, which contains minerals that facilitate the formation of calculus on the tooth surface.
-
Subgingival Calculus:
- In contrast, the inorganic components of subgingival calculus are derived mainly from crevicular fluid (serum transudate), which seeps into the gingival sulcus and contains various proteins and minerals from the bloodstream.
Aggressive periodontitis (AP) is a multifactorial, severe, and rapidly progressive form of periodontitis that primarily affects younger patients. It is characterized by a unique set of clinical and microbiological features that distinguish it from other forms of periodontal disease.
Key Characteristics
- Rapid Progression: AP is marked by a swift deterioration of periodontal tissues.
- Age Group: Primarily affects adolescents and young adults, but can occur at any age.
- Multifactorial Etiology: Involves a combination of microbiological, immunological, genetic, and environmental factors.
Other Findings
- Presence of Aggregatibacter actinomycetemcomitans (A.a.) in diseased sites.
- Abnormal host responses, including impaired phagocytosis and chemotaxis.
- Hyperresponsive macrophages leading to exaggerated inflammatory responses.
- The disease may exhibit self-arresting tendencies in some cases.
Classification
Aggressive periodontitis can be classified into two main types:
- Localized Aggressive Periodontitis (LAP): Typically affects the permanent molars and incisors, often with localized attachment loss.
- Generalized Aggressive Periodontitis (GAP): Involves more widespread periodontal tissue destruction.
Risk Factors
Microbiological Factors
- Aggregatibacter actinomycetemcomitans: A primary pathogen associated with LAP, producing a potent leukotoxin that kills neutrophils.
- Different strains of A.a. produce varying levels of leukotoxin, with highly toxic strains more prevalent in affected individuals.
Immunological Factors
- Human Leukocyte Antigens (HLAs): HLA-A9 and B-15 are candidate markers for aggressive periodontitis.
- Defective neutrophil function leads to impaired chemotaxis and phagocytosis.
- Hyper-responsive macrophage phenotype, characterized by elevated levels of PGE2 and IL-1β, may contribute to connective tissue breakdown and bone loss.
Genetic Factors
- Familial clustering of neutrophil abnormalities suggests a genetic predisposition.
- Genetic control of antibody responses to A.a., with variations in the ability to produce protective IgG2 antibodies.
Environmental Factors
- Smoking is a significant risk factor, with smokers experiencing more severe periodontal destruction compared to non-smokers.
Treatment Approaches
General Considerations
- Treatment strategies depend on the type and extent of periodontal destruction.
- GAP typically has a poorer prognosis compared to LAP, as it is less likely to enter spontaneous remission.
Conventional Periodontal Therapy
- Patient Education: Informing patients about the disease and its implications.
- Oral Hygiene Instructions: Reinforcing proper oral hygiene practices.
- Scaling and Root Planing: Removal of plaque and calculus to control local factors.
Surgical Resection Therapy
- Aimed at reducing or eliminating pocket depth.
- Contraindicated in cases of severe horizontal bone loss due to the risk of increased tooth mobility.
Regenerative Therapy
- Potential for regeneration is promising in AP cases.
- Techniques include open flap surgical debridement, root surface conditioning with tetracycline, and the use of allogenic bone grafts.
- Recent advances involve the use of enamel matrix proteins to promote cementum regeneration and new attachment.
Antimicrobial Therapy
- Often required as adjunctive treatment to eliminate A.a. from periodontal tissues.
- Tetracycline: Administered in various regimens to concentrate in periodontal tissues and inhibit A.a. growth.
- Combination Therapy: Metronidazole combined with amoxicillin has shown efficacy alongside periodontal therapy.
- Doxycycline: Used at a dose of 100 mg/day.
- Chlorhexidine (CHX): Irrigation and home rinsing to control bacterial load.
Host Modulation
- Involves the use of sub-antimicrobial dose doxycycline (SDD) to prevent periodontal attachment loss by modulating the activity of matrix metalloproteinases (MMPs), particularly collagenase and gelatinase.
Naber’s Probe and Furcation Involvement
Furcation involvement is a critical aspect of periodontal disease that affects the prognosis of teeth with multiple roots. Naber’s probe is a specialized instrument designed to assess furcation areas, allowing clinicians to determine the extent of periodontal attachment loss and the condition of the furcation. This lecture will cover the use of Naber’s probe, the classification of furcation involvement, and the clinical significance of these classifications.
Naber’s Probe
-
Description: Naber’s probe is a curved, blunt-ended instrument specifically designed for probing furcation areas. Its unique shape allows for horizontal probing, which is essential for accurately assessing the anatomy of multi-rooted teeth.
-
Usage: The probe is inserted horizontally into the furcation area to evaluate the extent of periodontal involvement. The clinician can feel the anatomical fluting between the roots, which aids in determining the classification of furcation involvement.
Classification of Furcation Involvement
Furcation involvement is classified into four main classes using Naber’s probe:
-
Class I:
- Description: The furcation can be probed to a depth of 3 mm.
- Clinical Findings: The probe can feel the anatomical fluting between the roots, but it cannot engage the roof of the furcation.
- Significance: Indicates early furcation involvement with minimal attachment loss.
-
Class II:
- Description: The furcation can be probed to a depth greater than 3 mm, but not through and through.
- Clinical Findings: This class represents a range between Class I and Class III, where there is partial loss of attachment but not complete penetration through the furcation.
- Significance: Indicates moderate furcation involvement that may require intervention.
-
Class III:
- Description: The furcation can be completely probed through and through.
- Clinical Findings: The probe passes from one furcation to the other, indicating significant loss of periodontal support.
- Significance: Represents advanced furcation involvement, often associated with a poor prognosis for the affected tooth.
-
Class III+:
- Description: The probe can go halfway across the tooth.
- Clinical Findings: Similar to Class III, but with partial obstruction or remaining tissue.
- Significance: Indicates severe furcation involvement with a significant loss of attachment.
-
Class IV:
- Description: Clinically, the examiner can see through the furcation.
- Clinical Findings: There is complete loss of tissue covering the furcation, making it visible upon examination.
- Significance: Indicates the most severe form of furcation involvement, often leading to tooth mobility and extraction.
Measurement Technique
- Measurement Reference: Measurements are taken from an imaginary tangent connecting the prominences of the root surfaces of both roots. This provides a consistent reference point for assessing the depth of furcation involvement.
Clinical Significance
-
Prognosis: The classification of furcation involvement is crucial for determining the prognosis of multi-rooted teeth. Higher classes of furcation involvement generally indicate a poorer prognosis and may necessitate more aggressive treatment strategies.
-
Treatment Planning: Understanding the extent of furcation involvement helps clinicians develop appropriate treatment plans, which may include scaling and root planing, surgical intervention, or extraction.
-
Monitoring: Regular assessment of furcation involvement using Naber’s probe can help monitor disease progression and the effectiveness of periodontal therapy.
Aggressive Periodontitis (formerly Juvenile Periodontitis)
- Historical Names: Previously referred to as periodontosis, deep cementopathia, diseases of eruption, Gottleib’s diseases, and periodontitis marginalis progressive.
- Risk Factors:
- High frequency of Actinobacillus actinomycetemcomitans.
- Immune defects (functional defects of PMNs and monocytes).
- Autoimmunity and genetic factors.
- Environmental factors, including smoking.
- Clinical Features:
- Vertical loss of alveolar bone around the first molars and incisors, typically beginning around puberty.
- Bone loss patterns often described as "target" or "bull" shaped lesions.
Bone grafting is a critical procedure in periodontal and dental surgery, aimed at restoring lost bone and supporting the regeneration of periodontal tissues. Various materials can be used for bone grafting, each with unique properties and applications.
A. Osseous Coagulum
- Composition: Osseous coagulum is a mixture of bone dust and blood. It is created using small particles ground from cortical bone.
- Sources: Bone dust can be obtained from various
anatomical sites, including:
- Lingual ridge of the mandible
- Exostoses
- Edentulous ridges
- Bone distal to terminal teeth
- Application: This material is used in periodontal surgery to promote healing and regeneration of bone in areas affected by periodontal disease.
B. Bioactive Glass
- Composition: Bioactive glass consists of sodium and calcium salts, phosphates, and silicon dioxide.
- Function: It promotes bone regeneration by forming a bond with surrounding bone and stimulating cellular activity.
C. HTR Polymer
- Composition: HTR Polymer is a non-resorbable, microporous, biocompatible composite made from polymethyl methacrylate (PMMA) and polyhydroxymethacrylate.
- Application: This material is used in various dental and periodontal applications due to its biocompatibility and structural properties.
D. Other Bone Graft Materials
- Sclera: Used as a graft material due to its collagen content and biocompatibility.
- Cartilage: Can be used in certain grafting procedures, particularly in reconstructive surgery.
- Plaster of Paris: Occasionally used in bone grafting, though less common due to its non-biological nature.
- Calcium Phosphate Biomaterials: These materials are osteoconductive and promote bone healing.
- Coral-Derived Materials: Natural coral can be processed to create a scaffold for bone regeneration.
Pathogens Implicated in Periodontal Diseases
Periodontal diseases are associated with a variety of pathogenic microorganisms. Below is a list of key pathogens implicated in different forms of periodontal disease, along with their associations:
General Pathogens Associated with Periodontal Diseases
-
Actinobacillus actinomycetemcomitans:
- Strongly associated with destructive periodontal disease.
-
Porphyromonas gingivalis:
- A member of the "black pigmented Bacteroides group" and a significant contributor to periodontal disease.
-
Bacteroides forsythus:
- Associated with chronic periodontitis.
-
Spirochetes (Treponema denticola):
- Implicated in various periodontal conditions.
-
Prevotella intermedia/nigrescens:
- Also belongs to the "black pigmented Bacteroides group" and is associated with several forms of periodontal disease.
-
Fusobacterium nucleatum:
- Plays a role in the progression of periodontal disease.
-
Campylobacter rectus:
- These organisms include members of the new genus Wolinella and are associated with periodontal disease.
Principal Bacteria Associated with Specific Periodontal Diseases
-
Adult Periodontitis:
- Porphyromonas gingivalis
- Prevotella intermedia
- Bacteroides forsythus
- Campylobacter rectus
-
Refractory Periodontitis:
- Bacteroides forsythus
- Porphyromonas gingivalis
- Campylobacter rectus
- Prevotella intermedia
-
Localized Juvenile Periodontitis (LJP):
- Actinobacillus actinomycetemcomitans
- Capnocytophaga
-
Periodontitis in Juvenile Diabetes:
- Capnocytophaga
- Actinobacillus actinomycetemcomitans
-
Pregnancy Gingivitis:
- Prevotella intermedia
-
Acute Necrotizing Ulcerative Gingivitis (ANUG):
- Prevotella intermedia
- Intermediate-sized spirochetes