Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Radiology

DENTAL X-RAY TUBE

The dental X-ray tube is surrounded by a glass envelope that houses a vacuum.
The glass prevents low-grade radiation from escaping. The vacuum insures the protection of the equipment from catastrophic failure. Production of X-rays generates enormous amounts of heat; the vacuum prevents the risk of combustion and ensures the proper environment for conduction of electrons.

There are two separate energy sources, one that powers the energy potential between the cathode ?lament and the anode, and the other being
the controls for the cathode ?lament. The latter essentially is the on and off switch of the X-ray unit.

The cathode ?lament is heated which causes electrons to be emitted.

These electrons are then accelerated by the electrical potential of the circuit.

Between the two points is a tungsten target.
When electrons strike the target, X-rays are produced.

HALF-VALUE LAYER

- Property of a material whereas the thickness (mm) reduces 50% of a monochromatic X-ray beam.
- Half-value layer of a beam of radiation from an X-ray unit is about 2 mm of aluminum (Al).

PRIMARY RADIATION

- Is the main beam produced from the X-ray tube. 

SECONDARY RADIATION

- Produced by the collision of the main beam with matter which causes scatter.

 

Digital Radiology

Advances in computer and X-ray technology now permit the use of systems that employ sensors in place of X-ray ?lms (with emulsion). The image is either directly or indirectly converted into a digital representation that is displayed on a computer screen. 

DIGITAL IMAGE RECEPTORS

- charged coupled device (CCD) used
- Pure silicon divided into pixels.
- Electromagnetic energy from visible light or X-rays interacts with pixels to create an electric charge that can be stored.
- Stored charges are transmitted electronically and create an analog output signal and displayed via digital converter (analog to digital converter). 

ADVANTAGES OF DIGITAL TECHNIQUE

Immediate display of images.

Enhancement of image (e.g., contrast, gray scale, brightness).

Radiation dose reduction up to 60%.

Major disadvantage: High initial cost of sensors. Decreased image resolution and contrast as compared to D speed ?lms.

DIRECT IMAGING

- CCD or complementary metal oxide semiconductor (CMOS) detector used that is sensitive to electromagnetic radiation.

- Performance is comparable to ?lm radiography for detection of periodontal lesions and proximal caries in noncavitated teeth.

INDIRECT IMAGING

- Radiographic ?lm is used as the image receiver (detector). 

- Image is digitized from signals created by a video device or scanner that views the radiograph.

 

Sensors

STORAGE PHOSPHOR IMAGING SYSTEMS

Phosphor screens are exposed to ionizing radiation which excites BaFBR:EU+2 crystals in the screen storing the image.

A computer-assisted laser then promotes the release of energy from the crystals in the form of blue light.

The blue light is scanned and the image is reconstructed digitally.

ELECTRONIC SENSOR SYSTEMS

X-rays are converted into light which is then read by an electronic sensor such as a CCD or CMOS.

Other systems convert the electromagnetic radiation directly into electrical impulses.

Digital image is created out of the electrical impulses. 

 

Explore by Exams