Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Orthodontics

Theories of Tooth Movement

  1. Pressure-Tension Theory:

    • Concept: This theory posits that tooth movement occurs in response to the application of forces that create areas of pressure and tension in the periodontal ligament (PDL).
    • Mechanism: When a force is applied to a tooth, the side of the tooth experiencing pressure (compression) leads to bone resorption, while the opposite side experiences tension, promoting bone deposition. This differential response allows the tooth to move in the direction of the applied force.
    • Clinical Relevance: This theory underlies the rationale for using light, continuous forces in orthodontic treatment to facilitate tooth movement without causing damage to the periodontal tissues.
  2. Biological Response Theory:

    • Concept: This theory emphasizes the biological response of the periodontal ligament and surrounding tissues to mechanical forces.
    • Mechanism: The application of force leads to a cascade of biological events, including the release of signaling molecules that stimulate osteoclasts (bone resorption) and osteoblasts (bone formation). This process is influenced by the magnitude, duration, and direction of the applied forces.
    • Clinical Relevance: Understanding the biological response helps orthodontists optimize force application to achieve desired tooth movement while minimizing adverse effects.
  3. Cortical Bone Theory:

    • Concept: This theory focuses on the role of cortical bone in tooth movement.
    • Mechanism: It suggests that the movement of teeth is influenced by the remodeling of cortical bone, which is denser and less responsive than the trabecular bone. The movement of teeth through the cortical bone requires greater forces and longer durations of application.
    • Clinical Relevance: This theory highlights the importance of considering the surrounding bone structure when planning orthodontic treatment, especially in cases requiring significant tooth movement.

Ashley Howe’s Analysis of Tooth Crowding

Introduction

Today, we will discuss Ashley Howe’s analysis, which provides valuable insights into the causes of tooth crowding and the relationship between dental arch dimensions and tooth size. Howe’s work emphasizes the importance of arch width over arch length in understanding dental crowding.

Key Concepts

Tooth Crowding

  • Definition: Tooth crowding refers to the lack of space in the dental arch for all teeth to fit properly.
  • Howe’s Perspective: Howe posited that tooth crowding is primarily due to a deficiency in arch width rather than arch length.

Relationship Between Tooth Size and Arch Width

  • Howe identified a significant relationship between the total mesiodistal diameter of teeth anterior to the second permanent molar and the width of the dental arch in the first premolar region. This relationship is crucial for understanding how tooth size can impact arch dimensions and overall dental alignment.

Procedure for Analysis

To conduct Ashley Howe’s analysis, the following measurements must be obtained:

  1. Percentage of PMD to TTM
    PMD X 100
          TTM
  2. Percentage of PMBAW to TTM
    PMBAW X 100
        TTM
  3. Percentage of BAL to TTM: [ \text{Percentage of BAL} = \left( \frac{\text{BAL}}{\text{TTM}} \right) \times 100 ]

Where:

  • PMD = Total mesiodistal diameter of teeth anterior to the second permanent molar.
  • PMBAW = Premolar basal arch width.
  • BAL = Basal arch length.
  • TTM = Total tooth mesiodistal measurement.

Inferences from the Analysis

The results of the measurements can lead to several important inferences regarding treatment options for tooth crowding:

  1. If PMBAW > PMD:

    • This indicates that the basal arch is sufficient to allow for the expansion of the premolars. In this case, expansion may be a viable treatment option.
  2. If PMD > PMBAW:

    • This scenario can lead to three possible treatment options:
      1. Contraindicated for Expansion: Expansion may not be advisable.
      2. Move Teeth Distally: Consideration for distal movement of teeth to create space.
      3. Extract Some Teeth: Extraction may be necessary to alleviate crowding.
  3. If PMBAW X 100 / TTM:

    • Less than 37%: Extraction is likely required.
    • 44%: This is considered an ideal case where extraction is not necessary.
    • Between 37% and 44%: This is a borderline case where extraction may or may not be required, necessitating further evaluation.

Quad helix appliance is an orthodontic device used to expand the upper arch of teeth. It is typically cemented to the molars and features a U-shaped stainless steel wire with active helix springs, helping to correct issues like crossbites, narrow jaws, and crowded teeth. ### Components of the Quad Helix Appliance

  • Helix Springs:

    • The appliance contains two or four active helix springs that exert gentle pressure to widen the dental arch.
  • Bands:

    • It is attached to the molars using bands, which provide a stable anchor for the appliance.
  • Wire Framework:

    • Made from 38 mil stainless steel wire, the framework allows for customization and adjustment by the orthodontist.

Functions of the Quad Helix Appliance

  • Arch Expansion:

    • The primary function is to gradually widen the upper arch, creating more space for crowded teeth.
  • Correction of Crossbites:

    • It helps in correcting posterior crossbites, where the lower teeth are positioned outside the upper teeth.
  • Molar Stabilization:

    • The appliance stabilizes the molars in their correct position during treatment.

Indications for Use

  • Narrow Upper Jaw:

    • Ideal for patients with a constricted upper arch.
  • Crowded Teeth:

    • Used when there is insufficient space for teeth to align properly.
  • Class II and Class III Cases:

    • Effective in treating specific malocclusions that require arch expansion.

Advantages of the Quad Helix Appliance

  1. Non-Invasive:

    • It is a non-surgical option for expanding the dental arch.
  2. Fixed Design:

    • As a fixed appliance, it does not rely on patient compliance for activation.
  3. Customizable:

    • The design allows for adjustments to meet individual patient needs.

Limitations of the Quad Helix Appliance

  1. Initial Discomfort:

    • Patients may experience mild discomfort or pressure during the first few weeks of use.
  2. Oral Hygiene Challenges:

    • Maintaining oral hygiene can be more difficult, requiring diligent cleaning around the appliance.
  3. Adjustment Period:

    • It may take time for patients to adapt to speaking and swallowing with the appliance in place.

Tweed's Analysis

Tweed's analysis is a comprehensive cephalometric method developed by Dr. Charles Tweed in the mid-20th century. It is primarily used in orthodontics to evaluate the relationships between the skeletal and dental structures of the face, particularly focusing on the position of the teeth and the skeletal bases. Tweed's analysis is instrumental in diagnosing malocclusions and planning orthodontic treatment.

Key Features of Tweed's Analysis

  1. Reference Planes and Points:

    • Sella (S): The midpoint of the sella turcica, a bony structure in the skull.
    • Nasion (N): The junction of the frontal and nasal bones.
    • A Point (A): The deepest point on the maxillary arch between the anterior nasal spine and the maxillary alveolar process.
    • B Point (B): The deepest point on the mandibular arch between the anterior nasal spine and the mandibular alveolar process.
    • Menton (Me): The lowest point on the symphysis of the mandible.
    • Gnathion (Gn): The midpoint between Menton and Pogonion (the most anterior point on the chin).
    • Pogonion (Pog): The most anterior point on the contour of the chin.
    • Go (Gonion): The midpoint of the contour of the ramus and the body of the mandible.
  2. Reference Lines:

    • SN Plane: A line drawn from Sella to Nasion, representing the cranial base.
    • Mandibular Plane (MP): A line connecting Gonion (Go) to Menton (Me), which represents the position of the mandible.
    • Facial Plane (FP): A line drawn from Gonion (Go) to Menton (Me), used to assess the facial profile.
  3. Key Measurements:

    • ANB Angle: The angle formed between the lines connecting A Point to Nasion and B Point to Nasion. It indicates the relationship between the maxilla and mandible.
      • Normal Range: Typically between 2° and 4°.
    • SN-MP Angle: The angle between the SN plane and the mandibular plane (MP), which helps assess the vertical position of the mandible.
      • Normal Range: Usually between 32° and 38°.
    • Wits Appraisal: The distance between the perpendiculars dropped from points A and B to the occlusal plane. It provides insight into the anteroposterior relationship of the dental bases.
    • Interincisal Angle: The angle formed between the long axes of the maxillary and mandibular incisors, which helps assess the inclination of the incisors.
  4. Tweed's Philosophy:

    • Tweed emphasized the importance of achieving a functional occlusion and a harmonious facial profile. He believed that orthodontic treatment should focus on the relationship between the dental and skeletal structures to achieve optimal results.

Clinical Relevance

  • Diagnosis and Treatment Planning: Tweed's analysis helps orthodontists diagnose skeletal discrepancies and plan appropriate treatment strategies. It provides a clear understanding of the patient's craniofacial relationships, which is essential for effective orthodontic intervention.
  • Monitoring Treatment Progress: By comparing pre-treatment and post-treatment cephalometric measurements, orthodontists can evaluate the effectiveness of the treatment and make necessary adjustments.
  • Predicting Treatment Outcomes: The analysis aids in predicting the outcomes of orthodontic treatment by assessing the initial skeletal and dental relationships.

Tongue Thrust

Tongue thrust is characterized by the forward movement of the tongue tip between the teeth to meet the lower lip during swallowing and speech, resulting in an interdental position of the tongue (Tulley, 1969). This habit can lead to various dental and orthodontic issues, particularly malocclusions such as anterior open bite.

Etiology of Tongue Thrust

  1. Retained Infantile Swallow:

    • The tongue does not drop back as it should after the eruption of incisors, continuing to thrust forward during swallowing.
  2. Upper Respiratory Tract Infection:

    • Conditions such as mouth breathing and allergies can contribute to tongue thrusting behavior.
  3. Neurological Disturbances:

    • Issues such as hyposensitivity of the palate or disruption of sensory control and coordination during swallowing can lead to tongue thrust.
  4. Feeding Practices:

    • Bottle feeding is more likely to contribute to the development of tongue thrust compared to breastfeeding.
  5. Induced by Other Oral Habits:

    • Habits like thumb sucking or finger sucking can create malocclusions (e.g., anterior open bite), leading to the tongue protruding between the anterior teeth during swallowing.
  6. Hereditary Factors:

    • A family history of tongue thrusting or related oral habits may contribute to the development of the condition.
  7. Tongue Size:

    • Conditions such as macroglossia (enlarged tongue) can predispose individuals to tongue thrusting.

Clinical Features

Extraoral

  • Lip Posture: Increased lip separation both at rest and during function.
  • Mandibular Movement: The path of mandibular movement is upward and backward, with the tongue moving forward.
  • Speech: Articulation problems, particularly with sounds such as /s/, /n/, /t/, /d/, /l/, /th/, /z/, and /v/.
  • Facial Form: Increased anterior facial height may be observed.

Intraoral

  1. Tongue Posture: The tongue tip is lower at rest due to the presence of an anterior open bite.
  2. Malocclusion:
    • Maxilla:
      • Proclination of maxillary anterior teeth.
      • Increased overjet.
      • Maxillary constriction.
      • Generalized spacing between teeth.
    • Mandible:
      • Retroclination of mandibular teeth.

Diagnosis

History

  • Family History: Determine the swallow patterns of siblings and parents to check for hereditary factors.
  • Medical History: Gather information regarding upper respiratory infections and sucking habits.
  • Patient Motivation: Assess the patient’s overall abilities, interests, and motivation for treatment.

Examination

  1. Swallowing Assessment:

    • Normal Swallowing:
      • Lips touch tightly.
      • Mandible rises as teeth come together.
      • Facial muscles show no marked contraction.
    • Abnormal Swallowing:
      • Teeth remain apart.
      • Lips do not touch.
      • Facial muscles show marked contraction.
  2. Inhibition Test:

    • Lightly hold the lower lip with a thumb and finger while the patient is asked to swallow water.
    • Normal Swallowing: The patient can swallow normally.
    • Abnormal Swallowing: The swallow is inhibited, requiring strong mentalis and lip contraction for mandibular stabilization, leading to water spilling from the mouth.

Management

  1. Behavioral Therapy:

    • Awareness Training: Educate the patient about the habit and its effects on oral health.
    • Positive Reinforcement: Encourage the patient to practice proper swallowing techniques and reward progress.
  2. Myofunctional Therapy:

    • Involves exercises to improve tongue posture and function, helping to retrain the muscles involved in swallowing and speech.
  3. Orthodontic Treatment:

    • If malocclusion is present, orthodontic intervention may be necessary to correct the dental alignment and occlusion.
    • Appliances such as a palatal crib or tongue thrusting appliances can be used to discourage the habit.
  4. Speech Therapy:

    • If speech issues are present, working with a speech therapist can help address articulation problems and improve speech clarity.
  5. Monitoring and Follow-Up:

    • Regular follow-up appointments to monitor progress and make necessary adjustments to the treatment plan.

SEQUENCE OF ERUPTION OF DECIDUOUS TEETH

Upper/Lower   A B D C E 

SEQUENCE OF ERUPTION OF PERMAMENT TEETH 

Upper:   6 1 2 4 3 5 7           Lower:    6 1 2 3 4 5 7   
      
or       6 1 2 4 5 3 7              or  6 1 2 4 3 5 7 
 

ANTHROPOID SPACE / PRIMATE SPACE / SIMIEN’S SPACE  

The space mesial to upper deciduous canine and distal to lower deciduous  canine is characteristically found in primates and hence it is called primate space.  

INCISOR LIABILITY 

When the permanent central incisor erupt, these teeth use up specially all the spaces found in the normal dentition. With the eruption of permanent lateral incisor the space situation becomes tight. In the maxillary arch it is just enough to accommodate but in mandibular arch there is an average 1.6 mm less space available. This difference between the space present and space required is known as incisor liability. 
These conditions overcome by;  

      1. This is a transient condition and extra space comes from slight increase in arch width.   
      2. Slight labial positioning of central and lateral incisor. 
      3. Distal shift of permanent canine.        

      
LEE WAY SPACE (OF NANCE)  

The combined mesiodistal width of the permanent canines and pre molars is usually less that of the deciduous canines and molars. This space is 
called leeway space of Nance.     

Measurement of lee way space: 
 

Is greater in the mandibular arch than in the maxillary arch  It is about 1.8mm [0.9mm on each side of the arch] in the maxillary arch. 
And about 3.4mm [1.7 mm on side of the arch] in the mandibular arch. 
 
Importance:  

 This lee way space allows the mesial movement of lower molar there by correcting flush terminal plane.     
 LWS can be measure with the help of cephalometry.    

FLUSH TERMINAL PLANE (TERMINAL PLANE RELATIONSHIP) 

Mandibular 2nd deciduous molar is usually wider mesio-distally then the maxillary 2nd deciduous molar. This leads to the development of flush terminal plane which falls along the distal surface of upper and lower 2nd deciduous molar. This develops into class I molar relationship. 

Distal step relationship leads to class 2 relationship.
Mesial step relationship mostly leads to class 3 relationship.  

FEATURE OF IDEAL OCCLUSION IN PRIMARY DENTITION 

1. Spacing of anterior teeth. 
2. Primate space is present. 
3. Flush terminal plane is found. 
4. Almost vertical inclination of anterior teeth. 
5. Overbite and overjet varies.  

UGLY DUCKLING STAGE  

Definition:  
Stage of a transient or self correcting malocclusion is seen sometimes is called ugly duck ling stage. 
 
Occurring site: Maxillary incisor region 

Occuring age: 8-9 years of age.  

This situation is seen during the eruption of the permanent canines. As the developing p.c. they displace the roots of lateral incisor mesially this results is transmitting of the force on to the roots of the central incisors which also gets displaced mesially. A resultant distal divergence of the crowns of the two central incisors causes midline spacing.  

This portion of teeth at this stage is compared to that of ugly walk of the duckling and hence it is called Ugly Duckling Stage. 

Described by Broad bent. In this stage children tend to look ugly. Parents are often apprehensive during this stage and consult the dentist.  

Corrects by itself, when canines erupt and the pressure is transferred from the roots to the coronal area of the incisor.  
IMPORTANCE OF 1ST MOLAR
 

1. It is the key tooth to occlusion. 
2.  Angle’s classification is based on this tooth. 
3.  It is the tooth of choice for anchorage. 
4.  Supports occlusion in a vertical direction. 
5.  Loss of this tooth leads to migration of other tooth. 
6.  Helps in opening the bite.   

Transpalatal Arch (TPA) is an orthodontic appliance used primarily in the upper arch to provide stability, maintain space, and facilitate tooth movement. It is a fixed appliance that connects the maxillary molars across the palate, and it is commonly used in various orthodontic treatments, particularly in conjunction with other appliances.

Components of the Transpalatal Arch

  1. Main Wire:

    • The TPA consists of a curved wire that spans the palate, typically made of stainless steel or a similar material. The wire is shaped to fit the contour of the palate and is usually 0.036 inches in diameter.
  2. Attachments:

    • The ends of the wire are attached to the bands or brackets on the maxillary molars. These attachments can be soldered or welded to the bands, ensuring a secure connection.
  3. Adjustment Mechanism:

    • Some TPAs may include loops or bends that can be adjusted to apply specific forces to the teeth, allowing for controlled movement.

Functions of the Transpalatal Arch

  1. Stabilization:

    • The TPA provides anchorage and stability to the posterior teeth, preventing unwanted movement during orthodontic treatment. It helps maintain the position of the molars and can prevent them from drifting.
  2. Space Maintenance:

    • The TPA can be used to maintain space in the upper arch, especially after the premature loss of primary molars or in cases of crowding.
  3. Tooth Movement:

    • The appliance can facilitate the movement of teeth, particularly the molars, by applying gentle forces. It can be used to correct crossbites or to expand the arch.
  4. Support for Other Appliances:

    • The TPA can serve as a support structure for other orthodontic appliances, such as expanders or functional appliances, enhancing their effectiveness.

Indications for Use

  • Space Maintenance: To hold space for permanent teeth when primary teeth are lost prematurely.
  • Crossbite Correction: To help correct posterior crossbites by repositioning the molars.
  • Arch Expansion: In conjunction with other appliances, the TPA can assist in expanding the dental arch.
  • Stabilization During Treatment: To provide anchorage and prevent unwanted movement of the molars during orthodontic treatment.

Advantages of the Transpalatal Arch

  1. Fixed Appliance: Being a fixed appliance, the TPA does not require patient compliance, ensuring consistent force application.
  2. Versatility: The TPA can be used in various treatment scenarios, making it a versatile tool in orthodontics.
  3. Minimal Discomfort: Generally, the TPA is well-tolerated by patients and does not cause significant discomfort.

Limitations of the Transpalatal Arch

  1. Limited Movement: The TPA primarily affects the molars and may not be effective for moving anterior teeth.
  2. Adjustment Needs: While the TPA can be adjusted, it may require periodic visits to the orthodontist for modifications.
  3. Oral Hygiene: As with any fixed appliance, maintaining oral hygiene can be more challenging, and patients must be diligent in their oral care.

Explore by Exams