Talk to us?

Orthodontics - NEETMDS- courses
NEET MDS Lessons
Orthodontics

Wayne A. Bolton Analysis

 Wayne A. Bolton's analysis, which is a critical tool in orthodontics for assessing the relationship between the sizes of maxillary and mandibular teeth. This analysis aids in making informed decisions regarding tooth extractions and achieving optimal dental alignment.

Key Concepts

Importance of Bolton's Analysis

  • Tooth Material Ratio: Bolton emphasized that the extraction of one or more teeth should be based on the ratio of tooth material between the maxillary and mandibular arches.
  • Goals: The primary objectives of this analysis are to achieve ideal interdigitation, overjet, overbite, and overall alignment of teeth, thereby attaining an optimum interarch relationship.
  • Disproportion Assessment: Bolton's analysis helps identify any disproportion between the sizes of maxillary and mandibular teeth.

Procedure for Analysis

To conduct Bolton's analysis, the following steps are taken:

  1. Measure Mesiodistal Diameters:

    • Calculate the sum of the mesiodistal diameters of the 12 maxillary teeth.
    • Calculate the sum of the mesiodistal diameters of the 12 mandibular teeth.
    • Similarly, calculate the sum for the 6 maxillary anterior teeth and the 6 mandibular anterior teeth.
  2. Overall Ratio Calculation: [ \text{Overall Ratio} = \left( \frac{\text{Sum of mesiodistal width of mandibular 12 teeth}}{\text{Sum of mesiodistal width of maxillary 12 teeth}} \right) \times 100 ]

    • Mean Value: 91.3%
  3. Anterior Ratio Calculation: [ \text{Anterior Ratio} = \left( \frac{\text{Sum of mesiodistal width of mandibular 6 teeth}}{\text{Sum of mesiodistal width of maxillary 6 teeth}} \right) \times 100 ]

    • Mean Value: 77.2%

Inferences from the Analysis

The results of Bolton's analysis can lead to several important inferences regarding treatment options:

  1. Excessive Mandibular Tooth Material:

    • If the ratio is greater than the mean value, it indicates that the mandibular tooth material is excessive.
  2. Excessive Maxillary Tooth Material:

    • If the ratio is less than the mean value, it suggests that the maxillary tooth material is excessive.
  3. Treatment Recommendations:

    • Proximal Stripping: If the upper anterior tooth material is in excess, Bolton recommends performing proximal stripping on the upper arch.
    • Extraction of Lower Incisors: If necessary, extraction of lower incisors may be indicated to reduce tooth material in the lower arch.

Drawbacks of Bolton's Analysis

While Bolton's analysis is a valuable tool, it does have some limitations:

  1. Population Specificity: The study was conducted on a specific population, and the ratios obtained may not be applicable to other population groups. This raises concerns about the generalizability of the findings.

  2. Sexual Dimorphism: The analysis does not account for sexual dimorphism in the width of maxillary canines, which can lead to inaccuracies in certain cases.

Forces Required for Tooth Movements

  1. Tipping:

    • Force Required: 50-75 grams
    • Description: Tipping involves the movement of a tooth around its center of resistance, resulting in a change in the angulation of the tooth.
  2. Bodily Movement:

    • Force Required: 100-150 grams
    • Description: Bodily movement refers to the translation of a tooth in its entirety, moving it in a straight line without tipping.
  3. Intrusion:

    • Force Required: 15-25 grams
    • Description: Intrusion is the movement of a tooth into the alveolar bone, effectively reducing its height in the dental arch.
  4. Extrusion:

    • Force Required: 50-75 grams
    • Description: Extrusion involves the movement of a tooth out of the alveolar bone, increasing its height in the dental arch.
  5. Torquing:

    • Force Required: 50-75 grams
    • Description: Torquing refers to the rotational movement of a tooth around its long axis, affecting the angulation of the tooth in the buccolingual direction.
  6. Uprighting:

    • Force Required: 75-125 grams
    • Description: Uprighting is the movement of a tilted tooth back to its proper vertical position.
  7. Rotation:

    • Force Required: 50-75 grams
    • Description: Rotation involves the movement of a tooth around its long axis, changing its orientation within the dental arch.
  8. Headgear:

    • Force Required: 350-450 grams on each side
    • Duration: Minimum of 12-14 hours per day
    • Description: Headgear is used to control the growth of the maxilla and to correct dental relationships.
  9. Face Mask:

    • Force Required: 1 pound (450 grams) per side
    • Duration: 12-14 hours per day
    • Description: A face mask is used to encourage forward growth of the maxilla in cases of Class III malocclusion.
  10. Chin Cup:

    • Initial Force Required: 150-300 grams per side
    • Subsequent Force Required: 450-700 grams per side (after two months)
    • Duration: 12-14 hours per day
    • Description: A chin cup is used to control the growth of the mandible and improve facial aesthetics.

SEQUENCE OF ERUPTION OF DECIDUOUS TEETH

Upper/Lower   A B D C E 

SEQUENCE OF ERUPTION OF PERMAMENT TEETH 

Upper:   6 1 2 4 3 5 7           Lower:    6 1 2 3 4 5 7   
      
or       6 1 2 4 5 3 7              or  6 1 2 4 3 5 7 
 

ANTHROPOID SPACE / PRIMATE SPACE / SIMIEN’S SPACE  

The space mesial to upper deciduous canine and distal to lower deciduous  canine is characteristically found in primates and hence it is called primate space.  

INCISOR LIABILITY 

When the permanent central incisor erupt, these teeth use up specially all the spaces found in the normal dentition. With the eruption of permanent lateral incisor the space situation becomes tight. In the maxillary arch it is just enough to accommodate but in mandibular arch there is an average 1.6 mm less space available. This difference between the space present and space required is known as incisor liability. 
These conditions overcome by;  

      1. This is a transient condition and extra space comes from slight increase in arch width.   
      2. Slight labial positioning of central and lateral incisor. 
      3. Distal shift of permanent canine.        

      
LEE WAY SPACE (OF NANCE)  

The combined mesiodistal width of the permanent canines and pre molars is usually less that of the deciduous canines and molars. This space is 
called leeway space of Nance.     

Measurement of lee way space: 
 

Is greater in the mandibular arch than in the maxillary arch  It is about 1.8mm [0.9mm on each side of the arch] in the maxillary arch. 
And about 3.4mm [1.7 mm on side of the arch] in the mandibular arch. 
 
Importance:  

 This lee way space allows the mesial movement of lower molar there by correcting flush terminal plane.     
 LWS can be measure with the help of cephalometry.    

FLUSH TERMINAL PLANE (TERMINAL PLANE RELATIONSHIP) 

Mandibular 2nd deciduous molar is usually wider mesio-distally then the maxillary 2nd deciduous molar. This leads to the development of flush terminal plane which falls along the distal surface of upper and lower 2nd deciduous molar. This develops into class I molar relationship. 

Distal step relationship leads to class 2 relationship.
Mesial step relationship mostly leads to class 3 relationship.  

FEATURE OF IDEAL OCCLUSION IN PRIMARY DENTITION 

1. Spacing of anterior teeth. 
2. Primate space is present. 
3. Flush terminal plane is found. 
4. Almost vertical inclination of anterior teeth. 
5. Overbite and overjet varies.  

UGLY DUCKLING STAGE  

Definition:  
Stage of a transient or self correcting malocclusion is seen sometimes is called ugly duck ling stage. 
 
Occurring site: Maxillary incisor region 

Occuring age: 8-9 years of age.  

This situation is seen during the eruption of the permanent canines. As the developing p.c. they displace the roots of lateral incisor mesially this results is transmitting of the force on to the roots of the central incisors which also gets displaced mesially. A resultant distal divergence of the crowns of the two central incisors causes midline spacing.  

This portion of teeth at this stage is compared to that of ugly walk of the duckling and hence it is called Ugly Duckling Stage. 

Described by Broad bent. In this stage children tend to look ugly. Parents are often apprehensive during this stage and consult the dentist.  

Corrects by itself, when canines erupt and the pressure is transferred from the roots to the coronal area of the incisor.  
IMPORTANCE OF 1ST MOLAR
 

1. It is the key tooth to occlusion. 
2.  Angle’s classification is based on this tooth. 
3.  It is the tooth of choice for anchorage. 
4.  Supports occlusion in a vertical direction. 
5.  Loss of this tooth leads to migration of other tooth. 
6.  Helps in opening the bite.   

Ashley Howe’s Analysis of Tooth Crowding

Introduction

Today, we will discuss Ashley Howe’s analysis, which provides valuable insights into the causes of tooth crowding and the relationship between dental arch dimensions and tooth size. Howe’s work emphasizes the importance of arch width over arch length in understanding dental crowding.

Key Concepts

Tooth Crowding

  • Definition: Tooth crowding refers to the lack of space in the dental arch for all teeth to fit properly.
  • Howe’s Perspective: Howe posited that tooth crowding is primarily due to a deficiency in arch width rather than arch length.

Relationship Between Tooth Size and Arch Width

  • Howe identified a significant relationship between the total mesiodistal diameter of teeth anterior to the second permanent molar and the width of the dental arch in the first premolar region. This relationship is crucial for understanding how tooth size can impact arch dimensions and overall dental alignment.

Procedure for Analysis

To conduct Ashley Howe’s analysis, the following measurements must be obtained:

  1. Percentage of PMD to TTM
    PMD X 100
          TTM
  2. Percentage of PMBAW to TTM
    PMBAW X 100
        TTM
  3. Percentage of BAL to TTM: [ \text{Percentage of BAL} = \left( \frac{\text{BAL}}{\text{TTM}} \right) \times 100 ]

Where:

  • PMD = Total mesiodistal diameter of teeth anterior to the second permanent molar.
  • PMBAW = Premolar basal arch width.
  • BAL = Basal arch length.
  • TTM = Total tooth mesiodistal measurement.

Inferences from the Analysis

The results of the measurements can lead to several important inferences regarding treatment options for tooth crowding:

  1. If PMBAW > PMD:

    • This indicates that the basal arch is sufficient to allow for the expansion of the premolars. In this case, expansion may be a viable treatment option.
  2. If PMD > PMBAW:

    • This scenario can lead to three possible treatment options:
      1. Contraindicated for Expansion: Expansion may not be advisable.
      2. Move Teeth Distally: Consideration for distal movement of teeth to create space.
      3. Extract Some Teeth: Extraction may be necessary to alleviate crowding.
  3. If PMBAW X 100 / TTM:

    • Less than 37%: Extraction is likely required.
    • 44%: This is considered an ideal case where extraction is not necessary.
    • Between 37% and 44%: This is a borderline case where extraction may or may not be required, necessitating further evaluation.

Retention

Definition: Retention refers to the phase following active orthodontic treatment where appliances are used to maintain the corrected positions of the teeth. The goal of retention is to prevent relapse and ensure that the teeth remain in their new, desired positions.

Types of Retainers

  1. Fixed Retainers:

    • Description: These are bonded to the lingual surfaces of the teeth, typically the anterior teeth, to maintain their positions.
    • Advantages: They provide continuous retention without requiring patient compliance.
    • Disadvantages: They can make oral hygiene more challenging and may require periodic replacement.
  2. Removable Retainers:

    • Description: These are appliances that can be taken out by the patient. Common types include:
      • Hawley Retainer: A custom-made acrylic plate with a wire framework that holds the teeth in position.
      • Essix Retainer: A clear, plastic retainer that fits over the teeth, providing a more aesthetic option.
    • Advantages: Easier to clean and can be removed for eating and oral hygiene.
    • Disadvantages: Their effectiveness relies on patient compliance; if not worn as prescribed, relapse may occur.

Duration of Retention

  • The duration of retention varies based on individual cases, but it is generally recommended to wear retainers full-time for a period (often several months to a year) and then transition to nighttime wear for an extended period (often several years).
  • Long-term retention may be necessary for some patients, especially those with a history of dental movement or specific malocclusions.

Thumb Sucking

According to Gellin, thumb sucking is defined as “the placement of the thumb or one or more fingers in varying depth into the mouth.” This behavior is common in infants and young children, serving as a self-soothing mechanism. However, prolonged thumb sucking can lead to various dental and orthodontic issues.

Diagnosis of Thumb Sucking

1. History

  • Psychological Component: Assess any underlying psychological factors that may contribute to the habit, such as anxiety or stress.
  • Frequency, Intensity, and Duration: Gather information on how often the child engages in thumb sucking, how intense the habit is, and how long it has been occurring.
  • Feeding Patterns: Inquire about the child’s feeding habits, including breastfeeding or bottle-feeding, as these can influence thumb sucking behavior.
  • Parental Care: Evaluate the parenting style and care provided to the child, as this can impact the development of habits.
  • Other Habits: Assess for the presence of other oral habits, such as pacifier use or nail-biting, which may coexist with thumb sucking.

2. Extraoral Examination

  • Digits:
    • Appearance: The fingers may appear reddened, exceptionally clean, chapped, or exhibit short fingernails (often referred to as "dishpan thumb").
    • Calluses: Fibrous, roughened calluses may be present on the superior aspect of the finger.
  • Lips:
    • Upper Lip: May appear short and hypotonic (reduced muscle tone).
    • Lower Lip: Often hyperactive, showing increased movement or tension.
  • Facial Form Analysis:
    • Mandibular Retrusion: Check for any signs of the lower jaw being positioned further back than normal.
    • Maxillary Protrusion: Assess for any forward positioning of the upper jaw.
    • High Mandibular Plane Angle: Evaluate the angle of the mandible, which may be increased due to the habit.

3. Intraoral Examination

  • Clinical Features:

    • Intraoral:
      • Labial Flaring: Maxillary anterior teeth may show labial flaring due to the pressure from thumb sucking.
      • Lingual Collapse: Mandibular anterior teeth may exhibit lingual collapse.
      • Increased Overjet: The distance between the upper and lower incisors may be increased.
      • Hypotonic Upper Lip: The upper lip may show reduced muscle tone.
      • Hyperactive Lower Lip: The lower lip may be more active, compensating for the upper lip.
      • Tongue Position: The tongue may be placed inferiorly, leading to a posterior crossbite due to maxillary arch contraction.
      • High Palatal Vault: The shape of the palate may be altered, resulting in a high palatal vault.
  • Extraoral:

    • Fungal Infection: There may be signs of fungal infection on the thumb due to prolonged moisture exposure.
    • Thumb Nail Appearance: The thumb nail may exhibit a dishpan appearance, indicating frequent moisture exposure and potential damage.

Management of Thumb Sucking

1. Reminder Therapy

  • Description: This involves using reminders to help the child become aware of their thumb sucking habit. Parents and caregivers can gently remind the child to stop when they notice them sucking their thumb. Positive reinforcement for not engaging in the habit can also be effective.

2. Mechanotherapy

  • Description: This approach involves using mechanical devices or appliances to discourage thumb sucking. Some options include:
    • Thumb Guards: These are devices that fit over the thumb to prevent sucking.
    • Palatal Crib: A fixed appliance that can be placed in the mouth to make thumb sucking uncomfortable or difficult.
    • Behavioral Appliances: Appliances that create discomfort when the child attempts to suck their thumb, thereby discouraging the habit.

Types of Springs

In orthodontics, various types of springs are utilized to achieve specific tooth movements. Each type of spring has unique characteristics and applications. Below are a few examples of commonly used springs in orthodontic appliances:

1. Finger Spring

  • Construction: Made from 0.5 mm stainless steel wire.
  • Components:
    • Helix: 2 mm in diameter.
    • Active Arm: The part that exerts force on the tooth.
    • Retentive Arm: Helps retain the appliance in place.
  • Placement: The helix is positioned opposite to the direction of the intended tooth movement and should be aligned along the long axis of the tooth, perpendicular to the direction of movement.
  • Indication: Primarily used for mesio-distal movement of teeth, such as closing anterior diastemas.
  • Activation: Achieved by opening the coil or moving the active arm towards the tooth to be moved by 2-3 mm.

2. Z-Spring (Double Cantilever)

  • Construction: Comprises two helices of small diameter, suitable for one or more incisors.
  • Positioning: The spring is positioned perpendicular to the palatal surface of the tooth, with a long retentive arm.
  • Preparation: The Z-spring needs to be boxed in wax prior to acrylization.
  • Indication: Used to move one or more teeth in the same direction, such as proclining two or more upper incisors to correct anterior tooth crossbites. It can also correct mild rotation if only one helix is activated.
  • Activation: Achieved by opening both helices up to 2 mm at a time.

3. Cranked Single Cantilever Spring

  • Construction: Made from 0.5 mm wire.
  • Design: The spring consists of a coil located close to its emergence from the base plate. It is cranked to keep it clear of adjacent teeth.
  • Indication: Primarily used to move teeth labially.

4. T Spring

  • Construction: Made from 0.5 mm wire.
  • Design: The spring consists of a T-shaped arm, with the arms embedded in acrylic.
  • Indication: Used for buccal movement of premolars and some canines.
  • Activation: Achieved by pulling the free end of the spring toward the intended direction of tooth movement.

5. Coffin Spring

  • Construction: Made from 1.2 mm wire.
  • Design: Consists of a U or omega-shaped wire placed in the midpalatal region, with a retentive arm incorporated into the base plates.
  • Retention: Retained by Adams clasps on molars.
  • Indication: Used for slow dentoalveolar arch expansion in patients with upper arch constriction or in cases of unilateral crossbite.

Explore by Exams