NEET MDS Lessons
Orthodontics
Anchorage in orthodontics refers to the resistance to unwanted tooth movement during orthodontic treatment. It is a critical concept that helps orthodontists achieve desired tooth movements while preventing adjacent teeth or the entire dental arch from shifting. Proper anchorage is essential for effective treatment planning and execution, especially in complex cases where multiple teeth need to be moved simultaneously.
Types of Anchorage
-
Absolute Anchorage:
- Definition: This type of anchorage prevents any movement of the anchorage unit (the teeth or structures providing support) during treatment.
- Application: Used when significant movement of other teeth is required, such as in cases of molar distalization or when correcting severe malocclusions.
- Methods:
- Temporary Anchorage Devices (TADs): Small screws or plates that are temporarily placed in the bone to provide stable anchorage.
- Extraoral Appliances: Devices like headgear that anchor to the skull or neck to prevent movement of certain teeth.
-
Relative Anchorage:
- Definition: This type allows for some movement of the anchorage unit while still providing enough resistance to achieve the desired tooth movement.
- Application: Commonly used in cases where some teeth need to be moved while others serve as anchors.
- Methods:
- Brackets and Bands: Teeth can be used as anchors, but they may move slightly during treatment.
- Class II or Class III Elastics: These can be used to create a force system that allows for some movement of the anchorage unit.
-
Functional Anchorage:
- Definition: This type utilizes the functional relationships between teeth and the surrounding structures to achieve desired movements.
- Application: Often used in conjunction with functional appliances that guide jaw growth and tooth positioning.
- Methods:
- Functional Appliances: Such as the Herbst or Bionator, which reposition the mandible and influence the growth of the maxilla.
Factors Influencing Anchorage
- Tooth Position: The position and root morphology of the anchorage teeth can affect their ability to resist movement.
- Bone Quality: The density and health of the surrounding bone can influence the effectiveness of anchorage.
- Force Magnitude and Direction: The amount and direction of forces applied during treatment can impact the stability of anchorage.
- Patient Compliance: Adherence to wearing appliances as prescribed is crucial for maintaining effective anchorage.
Clinical Considerations
- Treatment Planning: Proper assessment of anchorage needs is essential during the treatment planning phase. Orthodontists must determine the type of anchorage required based on the specific movements needed.
- Monitoring Progress: Throughout treatment, orthodontists should monitor the anchorage unit to ensure it remains stable and that desired tooth movements are occurring as planned.
- Adjustments: If unwanted movement of the anchorage unit occurs, adjustments may be necessary, such as changing the force system or utilizing additional anchorage methods.
Thumb Sucking
According to Gellin, thumb sucking is defined as “the placement of the thumb or one or more fingers in varying depth into the mouth.” This behavior is common in infants and young children, serving as a self-soothing mechanism. However, prolonged thumb sucking can lead to various dental and orthodontic issues.
Diagnosis of Thumb Sucking
1. History
- Psychological Component: Assess any underlying psychological factors that may contribute to the habit, such as anxiety or stress.
- Frequency, Intensity, and Duration: Gather information on how often the child engages in thumb sucking, how intense the habit is, and how long it has been occurring.
- Feeding Patterns: Inquire about the child’s feeding habits, including breastfeeding or bottle-feeding, as these can influence thumb sucking behavior.
- Parental Care: Evaluate the parenting style and care provided to the child, as this can impact the development of habits.
- Other Habits: Assess for the presence of other oral habits, such as pacifier use or nail-biting, which may coexist with thumb sucking.
2. Extraoral Examination
- Digits:
- Appearance: The fingers may appear reddened, exceptionally clean, chapped, or exhibit short fingernails (often referred to as "dishpan thumb").
- Calluses: Fibrous, roughened calluses may be present on the superior aspect of the finger.
- Lips:
- Upper Lip: May appear short and hypotonic (reduced muscle tone).
- Lower Lip: Often hyperactive, showing increased movement or tension.
- Facial Form Analysis:
- Mandibular Retrusion: Check for any signs of the lower jaw being positioned further back than normal.
- Maxillary Protrusion: Assess for any forward positioning of the upper jaw.
- High Mandibular Plane Angle: Evaluate the angle of the mandible, which may be increased due to the habit.
3. Intraoral Examination
-
Clinical Features:
- Intraoral:
- Labial Flaring: Maxillary anterior teeth may show labial flaring due to the pressure from thumb sucking.
- Lingual Collapse: Mandibular anterior teeth may exhibit lingual collapse.
- Increased Overjet: The distance between the upper and lower incisors may be increased.
- Hypotonic Upper Lip: The upper lip may show reduced muscle tone.
- Hyperactive Lower Lip: The lower lip may be more active, compensating for the upper lip.
- Tongue Position: The tongue may be placed inferiorly, leading to a posterior crossbite due to maxillary arch contraction.
- High Palatal Vault: The shape of the palate may be altered, resulting in a high palatal vault.
- Intraoral:
-
Extraoral:
- Fungal Infection: There may be signs of fungal infection on the thumb due to prolonged moisture exposure.
- Thumb Nail Appearance: The thumb nail may exhibit a dishpan appearance, indicating frequent moisture exposure and potential damage.
Management of Thumb Sucking
1. Reminder Therapy
- Description: This involves using reminders to help the child become aware of their thumb sucking habit. Parents and caregivers can gently remind the child to stop when they notice them sucking their thumb. Positive reinforcement for not engaging in the habit can also be effective.
2. Mechanotherapy
- Description: This approach involves using mechanical
devices or appliances to discourage thumb sucking. Some options include:
- Thumb Guards: These are devices that fit over the thumb to prevent sucking.
- Palatal Crib: A fixed appliance that can be placed in the mouth to make thumb sucking uncomfortable or difficult.
- Behavioral Appliances: Appliances that create discomfort when the child attempts to suck their thumb, thereby discouraging the habit.
Types of Springs
In orthodontics, various types of springs are utilized to achieve specific tooth movements. Each type of spring has unique characteristics and applications. Below are a few examples of commonly used springs in orthodontic appliances:
1. Finger Spring
- Construction: Made from 0.5 mm stainless steel wire.
- Components:
- Helix: 2 mm in diameter.
- Active Arm: The part that exerts force on the tooth.
- Retentive Arm: Helps retain the appliance in place.
- Placement: The helix is positioned opposite to the direction of the intended tooth movement and should be aligned along the long axis of the tooth, perpendicular to the direction of movement.
- Indication: Primarily used for mesio-distal movement of teeth, such as closing anterior diastemas.
- Activation: Achieved by opening the coil or moving the active arm towards the tooth to be moved by 2-3 mm.
2. Z-Spring (Double Cantilever)
- Construction: Comprises two helices of small diameter, suitable for one or more incisors.
- Positioning: The spring is positioned perpendicular to the palatal surface of the tooth, with a long retentive arm.
- Preparation: The Z-spring needs to be boxed in wax prior to acrylization.
- Indication: Used to move one or more teeth in the same direction, such as proclining two or more upper incisors to correct anterior tooth crossbites. It can also correct mild rotation if only one helix is activated.
- Activation: Achieved by opening both helices up to 2 mm at a time.
3. Cranked Single Cantilever Spring
- Construction: Made from 0.5 mm wire.
- Design: The spring consists of a coil located close to its emergence from the base plate. It is cranked to keep it clear of adjacent teeth.
- Indication: Primarily used to move teeth labially.
4. T Spring
- Construction: Made from 0.5 mm wire.
- Design: The spring consists of a T-shaped arm, with the arms embedded in acrylic.
- Indication: Used for buccal movement of premolars and some canines.
- Activation: Achieved by pulling the free end of the spring toward the intended direction of tooth movement.
5. Coffin Spring
- Construction: Made from 1.2 mm wire.
- Design: Consists of a U or omega-shaped wire placed in the midpalatal region, with a retentive arm incorporated into the base plates.
- Retention: Retained by Adams clasps on molars.
- Indication: Used for slow dentoalveolar arch expansion in patients with upper arch constriction or in cases of unilateral crossbite.
Ashley Howe’s Analysis of Tooth Crowding
Introduction
Today, we will discuss Ashley Howe’s analysis, which provides valuable insights into the causes of tooth crowding and the relationship between dental arch dimensions and tooth size. Howe’s work emphasizes the importance of arch width over arch length in understanding dental crowding.
Key Concepts
Tooth Crowding
- Definition: Tooth crowding refers to the lack of space in the dental arch for all teeth to fit properly.
- Howe’s Perspective: Howe posited that tooth crowding is primarily due to a deficiency in arch width rather than arch length.
Relationship Between Tooth Size and Arch Width
- Howe identified a significant relationship between the total mesiodistal diameter of teeth anterior to the second permanent molar and the width of the dental arch in the first premolar region. This relationship is crucial for understanding how tooth size can impact arch dimensions and overall dental alignment.
Procedure for Analysis
To conduct Ashley Howe’s analysis, the following measurements must be obtained:
-
Percentage of PMD to TTMPMD X 100TTM
-
Percentage of PMBAW to TTMPMBAW X 100TTM
-
Percentage of BAL to TTM: [ \text{Percentage of BAL} = \left( \frac{\text{BAL}}{\text{TTM}} \right) \times 100 ]
Where:
- PMD = Total mesiodistal diameter of teeth anterior to the second permanent molar.
- PMBAW = Premolar basal arch width.
- BAL = Basal arch length.
- TTM = Total tooth mesiodistal measurement.
Inferences from the Analysis
The results of the measurements can lead to several important inferences regarding treatment options for tooth crowding:
-
If PMBAW > PMD:
- This indicates that the basal arch is sufficient to allow for the expansion of the premolars. In this case, expansion may be a viable treatment option.
-
If PMD > PMBAW:
- This scenario can lead to three possible treatment options:
- Contraindicated for Expansion: Expansion may not be advisable.
- Move Teeth Distally: Consideration for distal movement of teeth to create space.
- Extract Some Teeth: Extraction may be necessary to alleviate crowding.
- This scenario can lead to three possible treatment options:
-
If PMBAW X 100 / TTM:
- Less than 37%: Extraction is likely required.
- 44%: This is considered an ideal case where extraction is not necessary.
- Between 37% and 44%: This is a borderline case where extraction may or may not be required, necessitating further evaluation.
Angle's Classification of Malocclusion
Developed by Dr. Edward Angle in the early 20th century, this classification is based on the relationship of the first molars and the canines. It is divided into three main classes:
Class I Malocclusion (Normal Occlusion)
- Description: The first molars are in a normal relationship, with the mesiobuccal cusp of the maxillary first molar fitting into the buccal groove of the mandibular first molar. The canines also have a normal relationship.
- Characteristics:
- The dental arches are aligned.
- There may be crowding, spacing, or other dental irregularities, but the overall molar relationship is normal.
Class II Malocclusion (Distocclusion)
- Description: The first molars are positioned such that the mesiobuccal cusp of the maxillary first molar is positioned more than one cusp width ahead of the buccal groove of the mandibular first molar.
- Subdivisions:
- Class II Division 1: Characterized by protruded maxillary incisors and a deep overbite.
- Class II Division 2: Characterized by retroclined maxillary incisors and a deep overbite, often with a normal or reduced overjet.
- Characteristics: This class often results in an overbite and can lead to aesthetic concerns.
Class III Malocclusion (Mesioocclusion)
- Description: The first molars are positioned such that the mesiobuccal cusp of the maxillary first molar is positioned more than one cusp width behind the buccal groove of the mandibular first molar.
- Characteristics:
- This class is often associated with an underbite, where the lower teeth are positioned more forward than the upper teeth.
- It can lead to functional issues and aesthetic concerns.
2. Skeletal Classification
In addition to Angle's classification, malocclusion can also be classified based on skeletal relationships, which consider the position of the maxilla and mandible in relation to each other. This classification is particularly useful in assessing the underlying skeletal discrepancies that may contribute to malocclusion.
Class I Skeletal Relationship
- Description: The maxilla and mandible are in a normal relationship, similar to Class I malocclusion in Angle's classification.
- Characteristics: The skeletal bases are well-aligned, but there may still be dental irregularities.
Class II Skeletal Relationship
- Description: The mandible is positioned further back relative to the maxilla, similar to Class II malocclusion.
- Characteristics: This can be due to a retruded mandible or an overdeveloped maxilla.
Class III Skeletal Relationship
- Description: The mandible is positioned further forward relative to the maxilla, similar to Class III malocclusion.
- Characteristics: This can be due to a protruded mandible or a retruded maxilla.
3. Other Classifications
In addition to Angle's and skeletal classifications, malocclusion can also be described based on specific characteristics:
-
Overbite: The vertical overlap of the upper incisors over the lower incisors. It can be classified as:
- Normal Overbite: Approximately 1-2 mm of overlap.
- Deep Overbite: Excessive overlap, which can lead to impaction of the lower incisors.
- Open Bite: Lack of vertical overlap, where the upper and lower incisors do not touch.
-
Overjet: The horizontal distance between the labioincisal edge of the upper incisors and the linguoincisal edge of the lower incisors. It can be classified as:
- Normal Overjet: Approximately 2-4 mm.
- Increased Overjet: Greater than 4 mm, often associated with Class II malocclusion.
- Decreased Overjet: Less than 2 mm, often associated with Class III malocclusion.
-
Crossbite: A condition where one or more of the upper teeth bite on the inside of the lower teeth. It can be:
- Anterior Crossbite: Involves the front teeth.
- Posterior Crossbite: Involves the back teeth.
Wayne A. Bolton Analysis
Wayne A. Bolton's analysis, which is a critical tool in orthodontics for assessing the relationship between the sizes of maxillary and mandibular teeth. This analysis aids in making informed decisions regarding tooth extractions and achieving optimal dental alignment.
Key Concepts
Importance of Bolton's Analysis
- Tooth Material Ratio: Bolton emphasized that the extraction of one or more teeth should be based on the ratio of tooth material between the maxillary and mandibular arches.
- Goals: The primary objectives of this analysis are to achieve ideal interdigitation, overjet, overbite, and overall alignment of teeth, thereby attaining an optimum interarch relationship.
- Disproportion Assessment: Bolton's analysis helps identify any disproportion between the sizes of maxillary and mandibular teeth.
Procedure for Analysis
To conduct Bolton's analysis, the following steps are taken:
-
Measure Mesiodistal Diameters:
- Calculate the sum of the mesiodistal diameters of the 12 maxillary teeth.
- Calculate the sum of the mesiodistal diameters of the 12 mandibular teeth.
- Similarly, calculate the sum for the 6 maxillary anterior teeth and the 6 mandibular anterior teeth.
-
Overall Ratio Calculation: [ \text{Overall Ratio} = \left( \frac{\text{Sum of mesiodistal width of mandibular 12 teeth}}{\text{Sum of mesiodistal width of maxillary 12 teeth}} \right) \times 100 ]
- Mean Value: 91.3%
-
Anterior Ratio Calculation: [ \text{Anterior Ratio} = \left( \frac{\text{Sum of mesiodistal width of mandibular 6 teeth}}{\text{Sum of mesiodistal width of maxillary 6 teeth}} \right) \times 100 ]
- Mean Value: 77.2%
Inferences from the Analysis
The results of Bolton's analysis can lead to several important inferences regarding treatment options:
-
Excessive Mandibular Tooth Material:
- If the ratio is greater than the mean value, it indicates that the mandibular tooth material is excessive.
-
Excessive Maxillary Tooth Material:
- If the ratio is less than the mean value, it suggests that the maxillary tooth material is excessive.
-
Treatment Recommendations:
- Proximal Stripping: If the upper anterior tooth material is in excess, Bolton recommends performing proximal stripping on the upper arch.
- Extraction of Lower Incisors: If necessary, extraction of lower incisors may be indicated to reduce tooth material in the lower arch.
Drawbacks of Bolton's Analysis
While Bolton's analysis is a valuable tool, it does have some limitations:
-
Population Specificity: The study was conducted on a specific population, and the ratios obtained may not be applicable to other population groups. This raises concerns about the generalizability of the findings.
-
Sexual Dimorphism: The analysis does not account for sexual dimorphism in the width of maxillary canines, which can lead to inaccuracies in certain cases.
Factors to Consider in Designing a Spring for Orthodontic Appliances
In orthodontics, the design of springs is critical for achieving effective tooth movement while ensuring patient comfort. Several factors must be considered when designing a spring to optimize its performance and functionality. Below, we will discuss these factors in detail.
1. Diameter of Wire
- Flexibility: The diameter of the wire used in the spring significantly influences its flexibility. A thinner wire will yield a more flexible spring, allowing for greater movement and adaptability.
- Force Delivery: The relationship between wire diameter and force delivery is crucial. A thicker wire will produce a stiffer spring, which may be necessary for certain applications but can limit flexibility.
2. Force Delivered by the Spring
-
Formula: The force (F) delivered by a spring can be expressed by the formula: [ $$F \propto \frac{d^4}{l^3} $$] Where:
- ( F ) = force applied by the spring
- ( d ) = diameter of the wire
- ( l ) = length of the wire
-
Implications: This formula indicates that the force exerted by the spring is directly proportional to the fourth power of the diameter of the wire and inversely proportional to the cube of the length of the wire. Therefore, small changes in wire diameter can lead to significant changes in force delivery.
3. Length of Wire
- Flexibility and Force: Increasing the length of the wire decreases the force exerted by the spring. Longer springs are generally more flexible and can remain active for extended periods.
- Force Reduction: By doubling the length of the wire, the force can be reduced by a factor of eight. This principle is essential when designing springs for specific tooth movements that require gentler forces.
4. Patient Comfort
- Design Considerations: The design, shape, size, and force generation of the spring must prioritize patient comfort. A well-designed spring should not cause discomfort or irritation to the oral tissues.
- Customization: Springs may need to be customized to fit the individual patient's anatomy and treatment needs, ensuring that they are comfortable during use.
5. Direction of Tooth Movement
- Point of Contact: The direction of tooth movement is determined by the point of contact between the spring and the tooth. Proper placement of the spring is essential for achieving the desired movement.
- Placement Considerations:
- Palatally Placed Springs: These are used for labial (toward the lips) and mesio-distal (toward the midline) tooth movements.
- Buccally Placed Springs: These are employed when the tooth needs to be moved palatally and in a mesio-distal direction.