NEET MDS Lessons
Oral and Maxillofacial Surgery
Seddon’s Classification of Nerve Injuries
-
Neuropraxia:
- Definition: This is the mildest form of nerve injury, often caused by compression or mild trauma.
- Sunderland Classification: Type I (10).
- Nerve Sheath: Intact; the surrounding connective tissue remains undamaged.
- Axons: Intact; the nerve fibers are not severed.
- Wallerian Degeneration: None; there is no degeneration of the distal nerve segment.
- Conduction Failure: Transitory; there may be temporary loss of function, but it is reversible.
- Spontaneous Recovery: Complete recovery is expected.
- Time of Recovery: Typically within 4 weeks.
-
Axonotmesis:
- Definition: This injury involves damage to the axons while the nerve sheath remains intact. It is often caused by more severe trauma, such as crush injuries.
- Sunderland Classification: Type II (20), Type III (30), Type IV (40).
- Nerve Sheath: Intact; the connective tissue framework is preserved.
- Axons: Interrupted; the nerve fibers are damaged but the sheath allows for potential regeneration.
- Wallerian Degeneration: Yes, partial; degeneration occurs in the distal segment of the nerve.
- Conduction Failure: Prolonged; there is a longer-lasting loss of function.
- Spontaneous Recovery: Partial recovery is possible, depending on the extent of the injury.
- Time of Recovery: Recovery may take months.
-
Neurotmesis:
- Definition: This is the most severe type of nerve injury, where both the axons and the nerve sheath are disrupted. It often results from lacerations or severe trauma.
- Sunderland Classification: Type V (50).
- Nerve Sheath: Interrupted; the connective tissue is damaged, complicating regeneration.
- Axons: Interrupted; the nerve fibers are completely severed.
- Wallerian Degeneration: Yes, complete; degeneration occurs in both the proximal and distal segments of the nerve.
- Conduction Failure: Permanent; there is a lasting loss of function.
- Spontaneous Recovery: Poor to none; recovery is unlikely without surgical intervention.
- Time of Recovery: Recovery may begin by 3 months, if at all.
Sutures
Sutures are an essential component of oral surgery, used to close wounds, secure grafts, and stabilize tissues after surgical procedures. The choice of suture material and sterilization methods is critical for ensuring effective healing and minimizing complications. Below is a detailed overview of suture materials, specifically focusing on catgut and its sterilization methods.
Types of Suture Materials
-
Absorbable Sutures: These sutures are designed to be broken down and absorbed by the body over time. They are commonly used in oral surgery for soft tissue closure where long-term support is not necessary.
- Catgut: A natural absorbable suture made from the intestinal mucosa of sheep or cattle. It is widely used in oral surgery due to its good handling properties and ability to promote healing.
-
Non-Absorbable Sutures: These sutures remain in the body until they are removed or until they eventually break down. They are used in situations where long-term support is needed.
Catgut Sutures
Sterilization Methods: Catgut sutures must be properly sterilized to prevent infection and ensure safety during surgical procedures. Two common sterilization methods for catgut are:
-
Gamma Radiation Sterilization:
- Process: Catgut sutures are sterilized using gamma radiation, typically at a dose of 2.5 mega-rads. This method effectively kills bacteria and other pathogens without compromising the integrity of the suture material.
- Preservation: After sterilization, catgut sutures are preserved in a solution of 2.5 percent formaldehyde and denatured absolute alcohol. This solution helps maintain the sterility of the sutures while preventing degradation.
- Packaging: The sutures are stored in spools or foils to protect them from contamination until they are ready for use.
-
Chromic Acid Method:
- Process: In this method, catgut sutures are immersed in a solution containing 20 percent chromic acid and five parts of 8.5 percent glycerin. This process not only sterilizes the sutures but also enhances their durability.
- Benefits: The chromic acid treatment helps to secure a longer stay in the pack, meaning that the sutures can maintain their strength and integrity for a more extended period before being used. This is particularly beneficial in surgical settings where sutures may need to be stored for some time.
Characteristics of Catgut Sutures
- Absorbability: Catgut sutures are absorbable, typically losing their tensile strength within 7 to 14 days, depending on the type (plain or chromic).
- Tensile Strength: They provide good initial tensile strength, making them suitable for various surgical applications.
- Biocompatibility: Being a natural product, catgut is generally well-tolerated by the body, although some patients may have sensitivities or allergic reactions.
- Handling: Catgut sutures are easy to handle and tie, making them a popular choice among surgeons.
Applications in Oral Surgery
- Soft Tissue Closure: Catgut sutures are commonly used for closing incisions in soft tissues of the oral cavity, such as after tooth extractions, periodontal surgeries, and mucosal repairs.
- Graft Stabilization: They can also be used to secure grafts in procedures like guided bone regeneration or soft tissue grafting.
Glasgow Coma Scale (GCS): Best Verbal Response
The Glasgow Coma Scale (GCS) is a clinical scale used to assess a patient's level of consciousness and neurological function, particularly after a head injury. It evaluates three aspects: eye opening, verbal response, and motor response. The best verbal response (V) is one of the components of the GCS and is scored as follows:
Best Verbal Response (V)
-
5 - Appropriate and Oriented:
- The patient is fully awake and can respond appropriately to questions, demonstrating awareness of their surroundings, time, and identity.
-
4 - Confused Conversation:
- The patient is able to speak but is confused and disoriented. They may answer questions but with some level of confusion or incorrect information.
-
3 - Inappropriate Words:
- The patient uses words but they are inappropriate or irrelevant to the context. The responses do not make sense in relation to the questions asked.
-
2 - Incomprehensible Sounds:
- The patient makes sounds that are not recognizable as words. This may include moaning or groaning but does not involve coherent speech.
-
1 - No Sounds:
- The patient does not make any verbal sounds or responses.
Differences between Cellulitis and Abscess
1. Duration
- Cellulitis: Typically presents in the acute phase, meaning it develops quickly, often within hours to days. It can arise from a break in the skin, such as a cut or insect bite, leading to a rapid inflammatory response.
- Abscess: Often represents a chronic phase of infection. An abscess may develop over time as the body attempts to contain an infection, leading to the formation of a localized pocket of pus.
2. Pain
- Cellulitis: The pain is usually severe and generalized, affecting a larger area of the skin and subcutaneous tissue. Patients may describe a feeling of tightness or swelling in the affected area.
- Abscess: Pain is localized to the site of the abscess and is often more intense. The pain may be throbbing and can worsen with movement or pressure on the area.
3. Localization
- Cellulitis: The infection has diffuse borders, meaning it spreads through the tissue without a clear boundary. This can make it difficult to determine the exact extent of the infection.
- Abscess: The infection is well-circumscribed, meaning it has a defined boundary. The body forms a capsule around the abscess, which helps to contain the infection.
4. Palpation
- Cellulitis: On examination, the affected area may feel doughy or indurated (hardened) due to swelling and inflammation. There is no distinct fluctuation, as there is no localized collection of pus.
- Abscess: When palpated, an abscess feels fluctuant, indicating the presence of pus. This fluctuation is a key clinical sign that helps differentiate an abscess from cellulitis.
5. Bacteria
- Cellulitis: Primarily caused by aerobic bacteria, such as Streptococcus and Staphylococcus species. These bacteria thrive in the presence of oxygen and are commonly found on the skin.
- Abscess: Often caused by anaerobic bacteria or a mixed flora, which can include both aerobic and anaerobic organisms. Anaerobic bacteria thrive in low-oxygen environments, which is typical in the center of an abscess.
6. Size
- Cellulitis: Generally larger in area, as it involves a broader region of tissue. The swelling can extend beyond the initial site of infection.
- Abscess: Typically smaller and localized to the area of the abscess. The size can vary, but it is usually confined to a specific area.
7. Presence of Pus
- Cellulitis: No pus is present; the infection is diffuse and does not form a localized collection of pus. The inflammatory response leads to swelling and redness but not to pus formation.
- Abscess: Yes, pus is present; the abscess is characterized by a collection of pus within a cavity. The pus is a result of the body’s immune response to the infection.
8. Degree of Seriousness
- Cellulitis: Generally considered more serious due to the potential for systemic spread and complications if untreated. It can lead to sepsis, especially in immunocompromised individuals.
- Abscess: While abscesses can also be serious, they are often more contained. They can usually be treated effectively with drainage, and the localized nature of the infection can make management more straightforward.
Clinical Significance
- Diagnosis: Differentiating between cellulitis and abscess is crucial for appropriate treatment. Cellulitis may require systemic antibiotics, while an abscess often requires drainage.
- Management:
- Cellulitis: Treatment typically involves antibiotics and monitoring for systemic symptoms. In severe cases, hospitalization may be necessary.
- Abscess: Treatment usually involves incision and drainage (I&D) to remove the pus, along with antibiotics if there is a risk of systemic infection.
Management of Greenstick/Crack Fractures of the Mandible
Greenstick fractures (or crack fractures) are incomplete fractures that typically occur in children due to the flexibility of their bones. Fracture in mandible, can often be managed conservatively, especially when there is no malocclusion (misalignment of the teeth).
Conservative Management
- No Fixation Required:
- For greenstick fractures without malocclusion, surgical fixation is generally not necessary.
- Closed Reduction: The fracture can be managed through closed reduction, which involves realigning the fractured bone without surgical exposure.
- Dietary Recommendations:
- Patients are advised to consume soft foods and maintain adequate hydration with lots of fluids to facilitate healing and minimize discomfort during eating.
Surgical Management Options
In cases where surgical intervention is required, or for more complex fractures, the following methods can be employed:
-
Kirschner Wire (K-wire) Fixation:
- Indications: K-wires can be used for both dentulous (having teeth) and edentulous (without teeth) mandibles.
- Technique: K-wires are inserted through the bone fragments to stabilize the fracture. This method provides internal fixation and helps maintain alignment during the healing process.
-
Circumferential Wiring:
- Indications: This technique is also applicable for both dentulous and edentulous mandibles.
- Technique: Circumferential wiring involves wrapping wire around the mandible to stabilize the fracture. This method can provide additional support and is often used in conjunction with other fixation techniques.
-
External Pin Fixation:
- Indications: Primarily used for edentulous mandibles.
- Technique: External pin fixation involves placing pins into the bone that are connected to an external frame. This method allows for stabilization of the mandible while avoiding intraoral fixation, which can be beneficial in certain clinical scenarios.
Cryosurgery
Cryosurgery is a medical technique that utilizes extreme rapid cooling to freeze and destroy tissues. This method is particularly effective for treating various conditions, including malignancies, vascular tumors, and aggressive tumors such as ameloblastoma. The process involves applying very low temperatures to induce localized tissue destruction while minimizing damage to surrounding healthy tissues.
Mechanism of Action
The effects of rapid freezing on tissues include:
-
Reduction of Intracellular Water:
- Rapid cooling causes water within the cells to freeze, leading to a decrease in intracellular water content.
-
Cellular and Cell Membrane Shrinkage:
- The freezing process results in the shrinkage of cells and their membranes, contributing to cellular damage.
-
Increased Concentrations of Intracellular Solutes:
- As water is removed from the cells, the concentration of solutes (such as proteins and electrolytes) increases, which can disrupt cellular function.
-
Formation of Ice Crystals:
- Both intracellular and extracellular ice crystals form during the freezing process. The formation of these crystals can puncture cell membranes and disrupt cellular integrity, leading to cell death.
Cryosurgery Apparatus
The equipment used in cryosurgery typically includes:
-
Storage Bottles for Pressurized Liquid Gases:
- Liquid Nitrogen: Provides extremely low temperatures of approximately -196°C, making it highly effective for cryosurgery.
- Liquid Carbon Dioxide or Nitrous Oxide: These gases provide temperatures ranging from -20°C to -90°C, which can also be used for various applications.
-
Pressure and Temperature Gauge:
- This gauge is essential for monitoring the pressure and temperature of the cryogenic gases to ensure safe and effective application.
-
Probe with Tubing:
- A specialized probe is used to direct the pressurized gas to the targeted tissues, allowing for precise application of the freezing effect.
Treatment Parameters
- Time and Temperature: The specific time and temperature used during cryosurgery depend on the depth and extent of the tumor being treated. The clinician must carefully assess these factors to achieve optimal results while minimizing damage to surrounding healthy tissues.
Applications
Cryosurgery is applied in the treatment of various conditions, including:
- Malignancies: Used to destroy cancerous tissues in various organs.
- Vascular Tumors: Effective in treating tumors that have a significant blood supply.
- Aggressive Tumors: Such as ameloblastoma, where rapid and effective tissue destruction is necessary.
Dry Socket (Alveolar Osteitis)
Dry socket, also known as alveolar osteitis, is a common complication that can occur after tooth extraction, particularly after the removal of mandibular molars. It is characterized by delayed postoperative pain due to the loss of the blood clot that normally forms in the extraction socket.
Key Features
-
Pathophysiology:
- After a tooth extraction, a blood clot forms in the socket, which is essential for healing. In dry socket, this clot is either dislodged or dissolves prematurely, exposing the underlying bone and nerve endings.
- The initial appearance of the clot may be dirty gray, and as it disintegrates, the socket may appear gray or grayish-yellow, indicating the presence of bare bone without granulation tissue.
-
Symptoms:
- Symptoms of dry socket typically begin 3 to 5 days after
the extraction. Patients may experience:
- Severe pain in the extraction site that can radiate to the ear, eye, or neck.
- A foul taste or odor in the mouth due to necrotic tissue.
- Visible empty socket with exposed bone.
- Symptoms of dry socket typically begin 3 to 5 days after
the extraction. Patients may experience:
-
Local Therapy:
- Management of dry socket involves local treatment to alleviate pain
and promote healing:
- Irrigation: The socket is irrigated with a warm sterile isotonic saline solution or a dilute solution of hydrogen peroxide to remove necrotic material and debris.
- Application of Medications: After irrigation, an obtundent (pain-relieving) agent or a topical anesthetic may be applied to the socket to provide symptomatic relief.
- Management of dry socket involves local treatment to alleviate pain
and promote healing:
-
Prevention:
- To reduce the risk of developing dry socket, patients are often
advised to:
- Avoid smoking and using straws for a few days post-extraction, as these can dislodge the clot.
- Follow postoperative care instructions provided by the dentist or oral surgeon.
- To reduce the risk of developing dry socket, patients are often
advised to: