NEET MDS Lessons
Oral and Maxillofacial Surgery
Sagittal Split Osteotomy (SSO)
Sagittal split osteotomy (SSO) is a surgical procedure used to correct various mandibular deformities, including mandibular prognathism (protrusion of the mandible) and retrognathism (retraction of the mandible). It is considered one of the most versatile osteotomies for addressing discrepancies in the position of the mandible relative to the maxilla.
Overview of the Procedure
-
Indications:
- Mandibular Prognathism: In cases where the mandible is positioned too far forward, SSO can be used to setback the mandible, improving occlusion and facial aesthetics.
- Mandibular Retrognathism: For patients with a retruded mandible, the procedure allows for advancement of the mandible to achieve a more balanced facial profile and functional occlusion.
-
Surgical Technique:
- The procedure involves making a sagittal split in the ramus and posterior body of the mandible. This is typically performed through an intraoral approach, which minimizes external scarring.
- The osteotomy creates two segments of the mandible: the proximal segment (attached to the maxilla) and the distal segment (which can be repositioned).
- Depending on the desired outcome, the distal segment can be either advanced or set back to achieve the desired occlusal relationship and aesthetic result.
-
Cosmetic Considerations:
- The intraoral approach used in SSO helps to avoid visible scarring on the face, making it a highly cosmetic procedure.
- The broader bony contact between the osteotomized segments promotes better healing and stability, which is crucial for achieving long-term results.
-
Healing and Recovery:
- The procedure typically results in good healing due to the increased surface area of contact between the bone segments.
- Postoperative care includes monitoring for complications, managing pain, and ensuring proper oral hygiene to prevent infection.
Advantages of Sagittal Split Osteotomy
- Versatility: SSO can be used to correct a wide range of mandibular discrepancies, making it suitable for various clinical scenarios.
- Cosmetic Outcome: The intraoral approach minimizes external scarring, enhancing the aesthetic outcome for patients.
- Stability: The broad bony contact between the segments ensures good stability and promotes effective healing.
- Functional Improvement: By correcting occlusal discrepancies, SSO can improve chewing function and overall oral health.
Considerations and Potential Complications
- Nerve Injury: There is a risk of injury to the inferior alveolar nerve, which can lead to temporary or permanent numbness in the lower lip and chin.
- Malocclusion: If not properly planned, there is a risk of postoperative malocclusion, which may require further intervention.
- Infection: As with any surgical procedure, there is a risk of infection at the surgical site.
Frenectomy- Overview and Techniques
A frenectomy is a surgical procedure that involves the removal of a frenum, which is a thin band of fibrous tissue that connects the lip or tongue to the underlying alveolar mucosa. This procedure is often performed to address issues related to abnormal frenal attachments that can cause functional or aesthetic problems.
Key Features of Frenal Attachment
- A frenum consists of a thin band of fibrous tissue and a few muscle fibers, covered by mucous membrane. It serves to anchor the lip or tongue to the underlying structures.
-
Common Locations:
- Maxillary Midline Frenum: The most commonly encountered frenum, located between the central incisors in the upper jaw.
- Lingual Frenum: Found under the tongue; its attachment can vary in length and thickness among individuals.
- Maxillary and Mandibular Frena: These can also be present in the premolar and molar areas, potentially affecting oral function and hygiene.
Indications for Frenectomy
- Functional Issues: An overly tight or thick frenum can restrict movement of the lip or tongue, leading to difficulties in speech, eating, or oral hygiene.
- Aesthetic Concerns: Prominent frena can cause spacing issues between teeth or affect the appearance of the smile.
- Orthodontic Considerations: In some cases, frenectomy may be performed prior to orthodontic treatment to facilitate tooth movement and prevent relapse.
Surgical Techniques
-
Z-Plasty Procedure:
- Indication: Used when the frenum is broad and the vestibule (the space between the lip and the gums) is short.
- Technique: This method involves creating a Z-shaped incision that allows for the repositioning of the tissue, effectively lengthening the vestibule and improving the functional outcome.
-
V-Y Incision:
- Indication: Employed for lengthening a localized area, particularly when the frenum is causing tension or restriction.
- Technique: A V-shaped incision is made, and the tissue is then sutured in a Y configuration, which helps to lengthen the frenum and improve mobility.
Postoperative Care
- Pain Management: Patients may experience discomfort following the procedure, which can be managed with analgesics.
- Oral Hygiene: Maintaining good oral hygiene is crucial to prevent infection at the surgical site.
Neurogenic Shock
Neurogenic shock is a type of distributive shock that occurs due to the loss of vasomotor tone, leading to widespread vasodilation and a significant decrease in systemic vascular resistance. This condition can occur without any loss of blood volume, resulting in inadequate filling of the circulatory system despite normal blood volume. Below is a detailed overview of neurogenic shock, its causes, symptoms, and management.
Mechanism of Neurogenic Shock
- Loss of Vasomotor Tone: Neurogenic shock is primarily caused by the disruption of sympathetic nervous system activity, which leads to a loss of vasomotor tone. This results in massive dilation of blood vessels, particularly veins, causing a significant increase in vascular capacity.
- Decreased Systemic Vascular Resistance: The dilated blood vessels cannot effectively maintain blood pressure, leading to inadequate perfusion of vital organs, including the brain.
Causes
- Spinal Cord Injury: Damage to the spinal cord, particularly at the cervical or upper thoracic levels, can disrupt sympathetic outflow and lead to neurogenic shock.
- Severe Head Injury: Traumatic brain injury can also affect autonomic regulation and result in neurogenic shock.
- Vasovagal Syncope: A common form of neurogenic shock, often triggered by emotional stress, pain, or prolonged standing, leading to a sudden drop in heart rate and blood pressure.
Symptoms
Early Signs:
- Pale or Ashen Gray Skin: Due to peripheral vasodilation and reduced blood flow to the skin.
- Heavy Perspiration: Increased sweating as a response to stress or pain.
- Nausea: Gastrointestinal distress may occur.
- Tachycardia: Increased heart rate as the body attempts to compensate for low blood pressure.
- Feeling of Warmth: Particularly in the neck or face due to vasodilation.
Late Symptoms:
- Coldness in Hands and Feet: Peripheral vasoconstriction may occur as the body prioritizes blood flow to vital organs.
- Hypotension: Significantly low blood pressure due to vasodilation.
- Bradycardia: Decreased heart rate, particularly in cases of vasovagal syncope.
- Dizziness and Visual Disturbance: Due to decreased cerebral perfusion.
- Papillary Dilation: As a response to low light levels in the eyes.
- Hyperpnea: Increased respiratory rate as the body attempts to compensate for low oxygen delivery.
- Loss of Consciousness: Resulting from critically low cerebral blood flow.
Duration of Syncope
- Brief Duration: The duration of syncope in neurogenic shock is typically very brief. Patients often regain consciousness almost immediately upon being placed in a supine position.
- Supine Positioning: This position is crucial as it helps increase venous return to the heart and improves cerebral perfusion, aiding in recovery.
Management
-
Positioning: The first and most important step in managing neurogenic shock is to place the patient in a supine position. This helps facilitate blood flow to the brain.
-
Fluid Resuscitation: While neurogenic shock does not typically involve blood loss, intravenous fluids may be administered to help restore vascular volume and improve blood pressure.
-
Vasopressors: In cases where hypotension persists despite fluid resuscitation, vasopressor medications may be used to constrict blood vessels and increase blood pressure.
-
Monitoring: Continuous monitoring of vital signs, including blood pressure, heart rate, and oxygen saturation, is essential to assess the patient's response to treatment.
-
Addressing Underlying Causes: If neurogenic shock is due to a specific cause, such as spinal cord injury or vasovagal syncope, appropriate interventions should be initiated to address the underlying issue.
Intraligamentary Injection and Supraperiosteal Technique
Intraligamentary Injection
- The intraligamentary injection technique is a simple and effective method for achieving localized anesthesia in dental procedures. It requires only a small volume of anesthetic solution and produces rapid onset of anesthesia.
-
Technique:
- Needle Placement:
- The needle is inserted into the gingival sulcus, typically on the mesial surface of the tooth.
- The needle is then advanced along the root surface until resistance is encountered, indicating that the needle is positioned within the periodontal ligament.
- Anesthetic Delivery:
- Approximately 0.2 ml of anesthetic solution is deposited into the periodontal ligament space.
- For multirooted teeth, injections should be made both mesially and distally to ensure adequate anesthesia of all roots.
- Needle Placement:
-
Considerations:
- Significant pressure is required to express the anesthetic solution into the periodontal ligament, which can be a factor to consider during administration.
- This technique is particularly useful for localized procedures where rapid anesthesia is desired.
Supraperiosteal Technique (Local Infiltration)
- The supraperiosteal injection technique is commonly used for achieving anesthesia in the maxillary arch, particularly for single-rooted teeth.
-
Technique:
-
Anesthetic Injection:
- For the first primary molar, the bone overlying the tooth is thin, allowing for effective anesthesia by injecting the anesthetic solution opposite the apices of the roots.
-
Challenges with Multirooted Teeth:
- The thick zygomatic process can complicate the anesthetic delivery for the buccal roots of the second primary molar and first permanent molars.
- Due to the increased thickness of bone in this area, the supraperiosteal injection at the apices of the roots of the second primary molar may be less effective.
-
Supplemental Injection:
- To enhance anesthesia, a supplemental injection should be administered superior to the maxillary tuberosity area to block the posterior superior alveolar nerve.
- This additional injection compensates for the bone thickness and the presence of the posterior middle superior alveolar nerve plexus, which can affect the efficacy of the initial injection.
-
Punch Biopsy Technique
A punch biopsy is a medical procedure used to obtain a small cylindrical sample of tissue from a lesion for diagnostic purposes. This technique is particularly useful for mucosal lesions located in areas that are difficult to access with conventional biopsy methods. Below is an overview of the punch biopsy technique, its applications, advantages, and potential limitations.
Punch Biopsy
-
Procedure:
- A punch biopsy involves the use of a specialized instrument called a punch (a circular blade) that is used to remove a small, cylindrical section of tissue from the lesion.
- The punch is typically available in various diameters (commonly ranging from 2 mm to 8 mm) depending on the size of the lesion and the amount of tissue needed for analysis.
- The procedure is usually performed under local anesthesia to minimize discomfort for the patient.
-
Technique:
- Preparation: The area around the lesion is cleaned and sterilized.
- Anesthesia: Local anesthetic is administered to numb the area.
- Punching: The punch is pressed down onto the lesion, and a twisting motion is applied to cut through the skin or mucosa, obtaining a tissue sample.
- Specimen Collection: The cylindrical tissue sample is then removed, and any bleeding is controlled.
- Closure: The site may be closed with sutures or left to heal by secondary intention, depending on the size of the biopsy and the location.
Applications
-
Mucosal Lesions: Punch biopsies are particularly useful for obtaining samples from mucosal lesions in areas such as:
- Oral cavity (e.g., lesions on the tongue, buccal mucosa, or gingiva)
- Nasal cavity
- Anus
- Other inaccessible regions where traditional biopsy methods may be challenging.
-
Skin Lesions: While primarily used for mucosal lesions, punch biopsies can also be performed on skin lesions to diagnose conditions such as:
- Skin cancers (e.g., melanoma, basal cell carcinoma)
- Inflammatory skin diseases (e.g., psoriasis, eczema)
Advantages
- Minimal Invasiveness: The punch biopsy technique is relatively quick and minimally invasive, making it suitable for outpatient settings.
- Preservation of Tissue Architecture: The cylindrical nature of the sample helps preserve the tissue architecture, which is important for accurate histopathological evaluation.
- Accessibility: It allows for sampling from difficult-to-reach areas that may not be accessible with other biopsy techniques.
Limitations
- Tissue Distortion: As noted, the punch biopsy technique can produce some degree of crushing or distortion of the tissues. This may affect the histological evaluation, particularly in delicate or small lesions.
- Sample Size: The size of the specimen obtained may be insufficient for certain diagnostic tests, especially if a larger sample is required for comprehensive analysis.
- Potential for Scarring: Depending on the size of the punch and the location, there may be a risk of scarring or changes in the appearance of the tissue after healing.
Hemostatic Agents
Hemostatic agents are critical in surgical procedures to control bleeding and promote wound healing. Various materials are used, each with unique properties and mechanisms of action. Below is a detailed overview of some commonly used hemostatic agents, including Gelfoam, Oxycel, Surgical (Oxycellulose), and Fibrin Glue.
1. Gelfoam
-
Composition: Gelfoam is made from gelatin and has a sponge-like structure.
-
Mechanism of Action:
- Gelfoam does not have intrinsic hemostatic properties; its hemostatic effect is primarily due to its large surface area, which comes into contact with blood.
- When Gelfoam absorbs blood, it swells and exerts pressure on the bleeding site, providing a scaffold for the formation of a fibrin network.
-
Application:
- Gelfoam should be moistened in saline or thrombin solution before application to ensure optimal performance. It is essential to remove all air from the interstices to maximize its effectiveness.
-
Absorption: Gelfoam is absorbed by the body through phagocytosis, typically within a few weeks.
2. Oxycel
-
Composition: Oxycel is made from oxidized cellulose.
-
Mechanism of Action:
- Upon application, Oxycel releases cellulosic acid, which has a strong affinity for hemoglobin, leading to the formation of an artificial clot.
- The acid produced during the wetting process can inactivate thrombin and other hemostatic agents, which is why Oxycel should be applied dry.
-
Limitations:
- The acid produced can inhibit epithelialization, making Oxycel unsuitable for use over epithelial surfaces.
3. Surgical (Oxycellulose)
-
Composition: Surgical is a glucose polymer-based sterile knitted fabric created through the controlled oxidation of regenerated cellulose.
-
Mechanism of Action:
- The local hemostatic mechanism relies on the binding of hemoglobin to oxycellulose, allowing the dressing to expand into a gelatinous mass. This mass acts as a scaffold for clot formation and stabilization.
-
Application:
- Surgical can be applied dry or soaked in thrombin solution, providing flexibility in its use.
-
Absorption: It is removed by liquefaction and phagocytosis over a period of one week to one month. Unlike Oxycel, Surgical does not inhibit epithelialization and can be used over epithelial surfaces.
4. Fibrin Glue
-
Composition: Fibrin glue is a biological adhesive that contains thrombin, fibrinogen, factor XIII, and aprotinin.
-
Mechanism of Action:
- Thrombin converts fibrinogen into an unstable fibrin clot, while factor XIII stabilizes the clot. Aprotinin prevents the degradation of the clot.
- During wound healing, fibroblasts migrate through the fibrin meshwork, forming a more permanent framework composed of collagen fibers.
-
Applications:
- Fibrin glue is used in various surgical procedures to promote hemostasis and facilitate tissue adhesion. It is particularly useful in areas where traditional sutures may be challenging to apply.
Piezosurgery
Piezosurgery is an advanced surgical technique that utilizes ultrasonic vibrations to cut bone and other hard tissues with precision. This method has gained popularity in oral and maxillofacial surgery due to its ability to minimize trauma to surrounding soft tissues, enhance surgical accuracy, and improve patient outcomes. Below is a detailed overview of the principles, advantages, applications, and specific uses of piezosurgery in oral surgery.
Principles of Piezosurgery
- Ultrasonic Technology: Piezosurgery employs ultrasonic waves to create high-frequency vibrations in specially designed surgical tips. These vibrations allow for precise cutting of bone while preserving adjacent soft tissues.
- Selective Cutting: The ultrasonic frequency is tuned to selectively cut mineralized tissues (like bone) without affecting softer tissues (like nerves and blood vessels). This selectivity reduces the risk of complications and enhances healing.
Advantages of Piezosurgery
-
Strength and Durability of Tips:
- Piezosurgery tips are made from high-quality materials that are strong and resistant to fracture. This durability allows for extended use without the need for frequent replacements, making them cost-effective in the long run.
-
Access to Difficult Areas:
- The design of piezosurgery tips allows them to reach challenging anatomical areas that may be difficult to access with traditional surgical instruments. This is particularly beneficial in complex procedures involving the mandible and maxilla.
-
Minimized Trauma:
- The ultrasonic cutting action produces less heat and vibration compared to traditional rotary instruments, which helps to preserve the integrity of surrounding soft tissues and reduces postoperative pain and swelling.
-
Enhanced Precision:
- The ability to perform precise cuts allows for better control during surgical procedures, leading to improved outcomes and reduced complications.
-
Reduced Blood Loss:
- The selective cutting action minimizes damage to blood vessels, resulting in less bleeding during surgery.
Applications in Oral Surgery
Piezosurgery has a variety of applications in oral and maxillofacial surgery, including:
-
Osteotomies:
- LeFort I Osteotomy: Piezosurgery is particularly useful in performing pterygoid disjunction during LeFort I osteotomy. The ability to precisely cut bone in the pterygoid region allows for better access and alignment during maxillary repositioning.
- Intraoral Vertical Ramus Osteotomy (IVRO): The lower border cut at the lateral surface of the ramus can be performed with piezosurgery, allowing for precise osteotomy while minimizing trauma to surrounding structures.
- Inferior Alveolar Nerve Lateralization: Piezosurgery can be used to carefully lateralize the inferior alveolar nerve during procedures such as bone grafting or implant placement, reducing the risk of nerve injury.
-
Bone Grafting:
- Piezosurgery is effective in harvesting bone grafts from donor sites, as it allows for precise cuts and minimal damage to surrounding tissues. This is particularly important in procedures requiring autogenous bone grafts.
-
Implant Placement:
- The technique can be used to prepare the bone for dental implants, allowing for precise osteotomy and reducing the risk of complications associated with traditional drilling methods.
-
Sinus Lift Procedures:
- Piezosurgery is beneficial in sinus lift procedures, where precise bone cutting is required to elevate the sinus membrane without damaging it.
-
Tumor Resection:
- The precision of piezosurgery makes it suitable for resecting tumors in the jaw while preserving surrounding healthy tissue.