NEET MDS Lessons
Oral and Maxillofacial Surgery
Characteristics of Middle-Third Facial Fractures
Middle-third facial fractures, often referred to as "midfacial fractures," involve the central portion of the face, including the nasal bones, maxilla, and zygomatic arch. These fractures can result from various types of trauma, such as motor vehicle accidents, falls, or physical assaults. The following points highlight the key features and clinical implications of middle-third facial fractures:
1. Oedema of the Middle Third of the Face
-
Rapid Development: Oedema (swelling) in the middle third of the face develops quickly after the injury, leading to a characteristic "balloon" appearance. This swelling is due to the accumulation of fluid in the soft tissues of the face.
-
Absence of Deep Cervical Fascia: The unique anatomical structure of the middle third of the face contributes to this swelling. The absence of deep cervical fascia in this region allows for the rapid spread of fluid, resulting in pronounced oedema.
-
Clinical Presentation: In the early stages following injury, patients with middle-third fractures often present with similar facial appearances due to the characteristic swelling. This can make diagnosis based solely on visual inspection challenging.
2. Lengthening of the Face
-
Displacement of the Middle Third: The downward and backward displacement of the middle third of the facial skeleton can lead to an increase in the overall length of the face. This displacement forces the mandible to open, which can result in a change in occlusion, particularly in the molar region.
-
Gagging of Occlusion: The altered position of the mandible can lead to a malocclusion, where the upper and lower teeth do not align properly. This can cause discomfort and difficulty in chewing or speaking.
-
Delayed Recognition of Lengthening: The true increase in facial length may not be fully appreciated until the initial oedema subsides. As the swelling decreases, the changes in facial structure become more apparent.
3. Nasal Obstruction
-
Blood Clots in the Nares: Following a middle-third fracture, the nares (nostrils) may become obstructed by blood clots, leading to nasal congestion. This can significantly impact the patient's ability to breathe through the nose.
-
Mouth Breathing: Due to the obstruction, patients are often forced to breathe through their mouths, which can lead to additional complications, such as dry mouth and increased risk of respiratory infections.
Intraligamentary Injection and Supraperiosteal Technique
Intraligamentary Injection
- The intraligamentary injection technique is a simple and effective method for achieving localized anesthesia in dental procedures. It requires only a small volume of anesthetic solution and produces rapid onset of anesthesia.
-
Technique:
- Needle Placement:
- The needle is inserted into the gingival sulcus, typically on the mesial surface of the tooth.
- The needle is then advanced along the root surface until resistance is encountered, indicating that the needle is positioned within the periodontal ligament.
- Anesthetic Delivery:
- Approximately 0.2 ml of anesthetic solution is deposited into the periodontal ligament space.
- For multirooted teeth, injections should be made both mesially and distally to ensure adequate anesthesia of all roots.
- Needle Placement:
-
Considerations:
- Significant pressure is required to express the anesthetic solution into the periodontal ligament, which can be a factor to consider during administration.
- This technique is particularly useful for localized procedures where rapid anesthesia is desired.
Supraperiosteal Technique (Local Infiltration)
- The supraperiosteal injection technique is commonly used for achieving anesthesia in the maxillary arch, particularly for single-rooted teeth.
-
Technique:
-
Anesthetic Injection:
- For the first primary molar, the bone overlying the tooth is thin, allowing for effective anesthesia by injecting the anesthetic solution opposite the apices of the roots.
-
Challenges with Multirooted Teeth:
- The thick zygomatic process can complicate the anesthetic delivery for the buccal roots of the second primary molar and first permanent molars.
- Due to the increased thickness of bone in this area, the supraperiosteal injection at the apices of the roots of the second primary molar may be less effective.
-
Supplemental Injection:
- To enhance anesthesia, a supplemental injection should be administered superior to the maxillary tuberosity area to block the posterior superior alveolar nerve.
- This additional injection compensates for the bone thickness and the presence of the posterior middle superior alveolar nerve plexus, which can affect the efficacy of the initial injection.
-
Axial Compression in Bone Fixation
Axial compression refers to a surgical technique used in the fixation of fractured bones, where the bony ends are brought into close proximity, minimizing the inter-fragmentary gap. This technique is crucial for achieving stable fixation and promoting optimal healing of fractures, particularly in the context of internal fixation using plates and screws.
Key Concepts of Axial Compression
-
Close Proximity of Bony Ends:
- In axial compression, the fractured ends of the bone are aligned closely together, which is essential for effective healing. The minimal inter-fragmentary gap allows for direct contact between the bone surfaces, facilitating the healing process.
-
Functional Dynamic Forces:
- During normal activities, such as chewing (masticatory function), dynamic forces are generated. These forces can create stress at the fracture site, which must be countered by the static forces provided by the fixation devices (plates and screws).
-
Static Forces from Plates and Screws:
- The stability of the fracture fixation relies on the ability of the plates and screws to provide sufficient static forces to counteract the dynamic forces generated during function. This is critical for maintaining the alignment of the fracture and preventing displacement.
-
Plate and Screw Specifications:
- Plate Thickness: Plates with a thickness of 2 mm are commonly used, as they provide adequate strength and stability while minimizing soft tissue irritation.
- Screw Specifications: Bi-cortical screws with a diameter of 2.7 mm are typically employed. These screws engage both cortices of the bone, enhancing stability and fixation strength.
-
Principle of Inclined Plane:
- The design of the holes in the plate and the head of the screws operates on the principle of an inclined plane. This design allows for the application of compressive forces when the screws are tightened, effectively drawing the bony fragments together.
- As the screws are tightened, they create a compressive force that helps to stabilize the fracture and maintain the alignment of the bone fragments.
Advantages of Axial Compression
- Enhanced Stability: By minimizing the inter-fragmentary gap and providing strong static forces, axial compression enhances the stability of the fracture fixation.
- Promotes Healing: Close approximation of the bony ends facilitates the healing process by allowing for direct contact and reducing the risk of non-union or malunion.
- Functional Restoration: Effective axial compression allows patients to regain function more quickly, as the fixation can withstand the dynamic forces generated during normal activities.
Management of Mandibular Fractures: Plate Fixation Techniques
The management of mandibular fractures involves various techniques for fixation, depending on the type and location of the fracture. .
1. Plate Placement in the Body of the Mandible
-
Single Plate Fixation:
- A single plate is recommended to be placed just below the apices of the teeth but above the inferior alveolar nerve canal. This positioning helps to avoid damage to the nerve while providing adequate support to the fracture site.
- Miniplate Fixation: Effective for non-displaced or minimally displaced fractures, provided the fracture is not severely comminuted. The miniplate should be placed at the superior border of the mandible, acting as a tension band that prevents distraction at the superior border while maintaining compression at the inferior border during function.
-
Additional Plates:
- While a solitary plate can provide adequate rigidity, the placement of an additional plate or the use of multi-armed plates (Y or H plates) can enhance stability, especially in more complex fractures.
2. Plate Placement in the Parasymphyseal and Symphyseal Regions
-
Two Plates for Stability:
- In the parasymphyseal and symphyseal regions, two plates are
recommended due to the torsional forces generated during function.
- First Plate: Placed at the inferior aspect of the mandible.
- Second Plate: Placed parallel and at least 5 mm superior to the first plate (subapical).
- In the parasymphyseal and symphyseal regions, two plates are
recommended due to the torsional forces generated during function.
-
Plate Placement Behind the Mental Foramen:
- A plate can be fixed in the subapical area and another near the lower border. Additionally, plates can be placed on the external oblique ridge or parallel to the lower border of the mandible.
3. Management of Comminuted or Grossly Displaced Fractures
- Reconstruction Plates:
- Comminuted or grossly displaced fractures of the mandibular body require fixation with a locking reconstruction plate or a standard reconstruction plate. These plates provide the necessary stability for complex fractures.
4. Management of Mandibular Angle Fractures
- Miniplate Fixation:
- When treating mandibular angle fractures, the plate should be placed at the superolateral aspect of the mandible, extending onto the broad surface of the external oblique ridge. This placement helps to counteract the forces acting on the angle of the mandible.
5. Stress Patterns and Plate Design
-
Stress Patterns:
- The zone of compression is located at the superior border of the mandible, while the neutral axis is approximately at the level of the inferior alveolar canal. Understanding these stress patterns is crucial for optimal plate placement.
-
Miniplate Characteristics:
- Developed by Michelet et al. and popularized by Champy et al., miniplates utilize monocortical screws and require a minimum of two screws in each osseous segment. They are smaller than standard plates, allowing for smaller incisions and less soft tissue dissection, which reduces the risk of complications.
6. Other Fixation Techniques
-
Compression Osteosynthesis:
- Indicated for non-oblique fractures that demonstrate good body opposition after reduction. Compression plates, such as dynamic compression plates (DCP), are used to achieve this. The inclined plate within the hole allows for translation of the bone toward the fracture site as the screw is tightened.
-
Fixation Osteosynthesis:
- For severely oblique fractures, comminuted fractures, and fractures with bone loss, compression plates are contraindicated. In these cases, non-compression osteosynthesis using locking plates or reconstruction plates is preferred. This method is also suitable for patients with questionable postoperative compliance or a non-stable mandible.
Cryosurgery
Cryosurgery is a medical technique that utilizes extreme rapid cooling to freeze and destroy tissues. This method is particularly effective for treating various conditions, including malignancies, vascular tumors, and aggressive tumors such as ameloblastoma. The process involves applying very low temperatures to induce localized tissue destruction while minimizing damage to surrounding healthy tissues.
Mechanism of Action
The effects of rapid freezing on tissues include:
-
Reduction of Intracellular Water:
- Rapid cooling causes water within the cells to freeze, leading to a decrease in intracellular water content.
-
Cellular and Cell Membrane Shrinkage:
- The freezing process results in the shrinkage of cells and their membranes, contributing to cellular damage.
-
Increased Concentrations of Intracellular Solutes:
- As water is removed from the cells, the concentration of solutes (such as proteins and electrolytes) increases, which can disrupt cellular function.
-
Formation of Ice Crystals:
- Both intracellular and extracellular ice crystals form during the freezing process. The formation of these crystals can puncture cell membranes and disrupt cellular integrity, leading to cell death.
Cryosurgery Apparatus
The equipment used in cryosurgery typically includes:
-
Storage Bottles for Pressurized Liquid Gases:
- Liquid Nitrogen: Provides extremely low temperatures of approximately -196°C, making it highly effective for cryosurgery.
- Liquid Carbon Dioxide or Nitrous Oxide: These gases provide temperatures ranging from -20°C to -90°C, which can also be used for various applications.
-
Pressure and Temperature Gauge:
- This gauge is essential for monitoring the pressure and temperature of the cryogenic gases to ensure safe and effective application.
-
Probe with Tubing:
- A specialized probe is used to direct the pressurized gas to the targeted tissues, allowing for precise application of the freezing effect.
Treatment Parameters
- Time and Temperature: The specific time and temperature used during cryosurgery depend on the depth and extent of the tumor being treated. The clinician must carefully assess these factors to achieve optimal results while minimizing damage to surrounding healthy tissues.
Applications
Cryosurgery is applied in the treatment of various conditions, including:
- Malignancies: Used to destroy cancerous tissues in various organs.
- Vascular Tumors: Effective in treating tumors that have a significant blood supply.
- Aggressive Tumors: Such as ameloblastoma, where rapid and effective tissue destruction is necessary.